
Application of the Electrostatically
Embedded Many-Body Expansion to
Microsolvation of Ammonia in Water
Clusters

Anastassia Sorkin, Erin E. Dahlke, and Donald G. Truhlar*

Department of Chemistry and Supercomputing Institute,
UniVersity of Minnesota,
Minneapolis, Minnesota 55403-0431

Received December 21, 2007

Abstract: The electrostatically embedded many-body
expansion (EE-MB), at both the second and third order,
that is, the electrostatically embedded pairwise additive
(EE-PA) approximation and the electrostatically embed-
ded three-body (EE-3B) approximation, are tested for
mixed ammonia-water clusters. We examine tetramers,
pentamers, and hexamers for three different density
functionals and two levels of wave function theory, We
compare the many-body results to the results of full
calculations performed without many-body expansions.
Because of the differing charge distributions in the two
kinds of monomers, this provides a different kind of test
of the usefulness of the EE-MB method than was
provided by previous tests on pure water clusters. We
find only small errors due to the truncation of the many-
body expansion for the mixed clusters. In particular, for
tests on tetramers and pentamers, the mean absolute
deviations for truncation at second order are 0.36-0.98
kcal/mol (average: 0.66 kcal/mol), and the mean abso-
lute deviations for truncation at third order are 0.04-0.28
(average: 0.16 kcal/mol). These may be compared to a
spread of energies as large as 4.24 kcal/mol in the
relative energies of various structures of pentamers and
to deviations of up to 8.57 kcal/mol of the full calculations
of relative energies from the best estimates of the
relative energies. When the methods are tested on
hexamers, the mean unsigned deviation per monomer
remains below 0.10 kcal/mol for EE-PA and below 0.03
kcal/mol for EE-3B. Thus the additional error due to the
truncation of the expansion is small compared to the
accuracy needed or the other approximations involved

in practical calculations. This means that the EE-MB
expansion in combination with density functional theory
or wave function theory for the oligomers provides a
useful practical model chemistry for making electronic
structure calculations and simulations more affordable
by improving the scaling with respect to system size.

1. Introduction
The accurate calculation of energies and other characteristics
of large systems is a challenging physical and chemical problem.
Molecular mechanics is able to treat large systems but does not
provide sufficient accuracy for many problems. On the other
hand, more accurate post Hartree-Fock methods (such as MP2,
CCSD, or CCSD(T)) and density functional theory (DFT) are
very expensive (relative to molecular mechanics) and their
computational cost increases quickly with the system size (for
example CCSD(T) scales as N7, where N is the number of atoms
in this system), which make applications of these methods to
very large systems impractical.

Recently, the electrostatically embedded many-body (EE-MB)
method was developed.1 This method is similar to methods
developed by Kitaura and Fedorov2,3 and Hirata et al.4 but is
easier to apply; in particular the method was formulated in such
a way that it is very easy to calculate energy gradients. In the
EE-MB method, the system is divided into fragments (typically
dimers or trimers), and each fragment is treated in a field of
point charges representing the electrostatic potential of the other
fragments. The locations of the point charges depend on the
geometry of the other fragments, but the magnitudes do not.
(Generalizations to more complicated prescriptions for the point
charges are possible but will not be considered in the present
work.) It was shown in previous work1,5 that the three-body
version (EE-3B) of EE-MB with this simple prescription for
the electrostatics, when applied to water clusters containing
5-21 water molecules, yields a mean error less than 0.4 kcal/
mol for all levels of theory examined.

Small NH3(H2O)n clusters play an important role in atmo-
spheric aerosol formation.6,7 NH3(H2O)n and similar com-
plexes have been extensively studied both experimentally8–11

and theoretically,12–16 and in the present article we have applied
the EE-MB method to calculate total energies of such clusters
with n ) 3-5. The calculations were done with three density
functionals (PBE, B3LYP, and M06-2X) and two wave function
methods (MP2 and CCSD(T)) with various basis sets. The
accuracies of the EE-PA (two-body) and EE-3B (three-body)
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versions of EE-MB were ascertained by comparison to full
calculations, i.e., calculations that do not employ a many-body
expansion.

2. Computational Details
All calculations in this paper were carried out using the MN-
GFM module version 3.0 for incorporation of new DFT models
into Gaussian03.17

The starting geometries of ammonia-water clusters NH3-
(H2O)n with n ) 3,4 were taken from Bacelo,16 who optimized
them at the MP2/6-311+G** level. We reoptimized these
structures with the PBE,18 B3LYP,19–22 and M06-2X23 func-
tionals and the MP224 post Hartree-Fock method with the
6-311++G(2d,2p) basis set. (The M06-2X functional was
recently found to be very accurate for main-group thermo-
chemistry and kinetics and for noncovalent interactions.23)
EE-PA and EE-3B calculations were carried out with each
of the methods with geometries optimized by the full

calculations with the corresponding method. The calculations,
including new geometry optimizations, were then repeated
with the 6-31+G(d,p) basis set. EE-PA and EE-3B calcula-
tions with the CCSD(T)/6-31+G(d,p)25 calculations were
performed with the geometries optimized with B3LYP/6-
311++G(2d, 2p) method.

Bacelo16 noted that the geometry of NH3(H2O)n clusters with
small n are similar to the geometries of stable water clusters.
Therefore two starting geometries of NH3(H2O)5 were generated
from the geometries of water hexamers (cage and ring), taken
from the The Cambridge Cluster Database,26 and one water
molecule in each hexamer was replaced by an ammonia
molecule. The resulting structures were optimized with the PBE,
B3LYP, and M06-2X functionals and the MP2 method, all with

Table 1. Sets of Charges Used in the Present Calculations

ammonia water

qN qH qO qH

M1 -0.867 0.289 -0.690 0.345
M2 -0.908 0.303 -0.716 0.358
M3 -0.953 0.318 -0.749 0.374
CM4 -0.906 -0.302 -0.648 0.324

Table 2. Relative Energies (kcal/mol) Predicted by Full
Calculations of Tetramers: NH3(H2O)3

c

B C D E

PBE/DZ 5.01 6.27 14.31 9.11
PBE/TZ 3.77 5.28 12.07 7.77
B3LYP/DZ 4.29 5.75 7.42 7.91
B3LYP/6-311+G(d,p)a 3.97 5.75 6.91 7.36
B3LYP/TZ 3.30 4.80 6.23 6.78
M06-2X/DZ 3.80 3.72 6.92 7.28
M06-2X/TZ 2.60 2.90 5.64 6.10
MP2/DZ 4.15 4.75 6.83 7.19
MP2/6-311+G(d,p)a 4.03 4.70 6.60 7.00
MP2/TZ 3.32 3.91 6.02 6.53
CCSD(T)/DZ 3.87 4.58 6.45 6.85
QCISD(T)/6-311+G(d,p)a 3.79 4.52 6.32 6.74
extrapolatedb 3.08 3.73 5.74 6.27

a Reference 16. b Best estimate obtained by eq 1. c All energies
are relative to the isomer A.

Table 3. Relative Energies (kcal/mol) Predicted by Full
Calculations of Pentamers: NH3(H2O)4

c

B C D E

PBE/DZ 2.06 0.95 2.62 4.24
PBE/TZ 1.15 0.65 2.12 3.43
B3LYP/DZ 2.09 0.92 2.40 4.18
B3LYP/6-311+G(d,p)a 1.94 0.77 2.25 4.12
B3LYP/TZ 1.12 0.003 2.01 3.36
M06-2X/DZ 1.71 0.79 1.17 3.41
M06-2X/TZ 1.50 0.94 1.85 3.37
MP2/DZ 0.80 0.66 1.52 3.29
MP2/6-311+G(d,p)a 0.75 0.85 1.59 3.33
MP2/TZ -0.09 0.14 0.97 2.34
CCSD(T)/DZ 0.84 0.68 1.52 3.46
QCISD(T)/6-311+G(d,p)a 0.42 0.69 1.37 3.18
extrapolatedb -0.42 -0.02 0.75 2.19

a Reference 13. b Best estimate obtained by eq 1. c All energies
are relative to the isomer A.

Table 4. Mean Unsigned Deviations (kcal/mol) from Full
Calculations for Four Models of Point Charges for Five
Tetramers NH3(H2O)3 and Five Pentamers NH3(H2O)4

a

M1 M2 M3 CM4

EE-PA
PBE/DZ 0.85 0.75 0.63 0.98
PBE/TZ 0.72 0.61 0.50 0.45
B3LYP/DZ 0.81 0.69 0.58 0.93
B3LYP/TZ 0.64 0.54 0.47 0.77
M06-2X/DZ 0.71 0.62 0.52 0.83
M06-2X/TZ 0.54 0.48 0.36 0.71
MP2/DZ 0.76 0.66 0.60 0.85
MP2/TZ 0.71 0.62 0.51 0.83

EE-3B
PBE/DZ 0.21 0.20 0.18 0.22
PBE/TZ 0.23 0.22 0.20 0.24
B3LYP/DZ 0.12 0.12 0.11 0.12
B3LYP/TZ 0.18 0.19 0.19 0.17
M06-2X/DZ 0.27 0.26 0.26 0.28
M06-2X/TZ 0.16 0.15 0.14 0.17
MP2/DZ 0.08 0.07 0.06 0.08
MP2/TZ 0.06 0.05 0.04 0.06

a Deviations in absolute electronic energies averaged over ten
structures.

Table 5. Mean Unsigned Errors (in kcal/mol) from Full
Calculations of the Relative Energies for Four Models of
Point Charges for Tetramers NH3(H2O)3

a

M1 M2 M3 CM4

EE-PA
PBE/DZ 0.85 0.79 0.72 0.92
PBE/TZ 0.86 0.79 0.73 0.92
B3LYP/DZ 0.42 0.39 0.35 0.47
B3LYP/TZ 0.39 0.35 0.31 0.43
M06-2X/DZ 0.31 0.28 0.24 0.34
M06-2X/TZ 0.24 0.21 0.17 0.28
MP2/DZ 0.25 0.18 0.26 0.29
MP2/TZ 0.25 0.22 0.18 0.28
CCSD(T)/DZ 0.28 0.25 0.24 0.32

EE-3B
PBE/DZ 0.13 0.12 0.11 0.13
PBE/TZ 0.12 0.12 0.11 0.13
B3LYP/DZ 0.05 0.04 0.04 0.05
B3LYP/TZ 0.05 0.05 0.04 0.06
M06-2X/DZ 0.09 0.09 0.08 0.09
M06-2X/TZ 0.08 0.07 0.07 0.08
MP2/DZ 0.03 0.03 0.04 0.04
MP2/TZ 0.02 0.02 0.01 0.02
CCSD(T)/DZ 0.04 0.04 0.04 0.05

a Averaged over ten pairs of structures.
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the 6-311++G(2d,2p) basis set. EE-PA and EE-3B calculations
were also carried out for these hexamers.

The EE-PA and EE-3B calculations were tested with 4 sets
of charges listed in Table 1. The three sets of charges M1, M2,
and M3 were calculated respectively with PBE, B3LYP, and

MP2, in each case using the ChelpG scheme27 on the monomers
and the 6-311++G(2d,2p) basis set. The last set of charges,
CM4, was calculated with the CM4 charge model28 using
B3LYP/6-31+G(d,p) on monomers. In our original test2 (for
pure water clusters), we found that the best results were obtained
with qO ) -0.778 and qO ) -0.834. Of the four sets of charges
in Table 1, the M3 set has the value of qO that is closest to
these values. Thus we shall consider the M3 set to be our
primary test set, and the results for the other three sets of charges

Figure 1. Structural isomers of NH3(H2O)3 (tetramers) used in this work.

Table 6. Mean Unsigned Errors (kcal/mol) from Full
Calculations of the Relative Energies for Four Models of
Point Charges in Pentamers NH3(H2O)4

a

M1 M2 M3 CM4

EE-PA
PBE/DZ 0.69 0.67 0.64 0.68
PBE/TZ 0.79 0.78 0.76 0.81
B3LYP/DZ 0.63 0.64 0.65 0.62
B3LYP/TZ 0.41 0.36 0.60 0.44
M06-2X/DZ 0.30 0.30 0.30 0.28
M06-2X/TZ 0.28 0.28 0.27 0.29
MP2/DZ 0.30 0.29 0.27 0.32
MP2/TZ 0.18 0.17 0.16 0.21

EE-3B
PBE/DZ 0.21 0.20 0.18 0.22
PBE/TZ 0.23 0.21 0.22 0.23
B3LYP/DZ 0.31 0.32 0.31 0.32
B3LYP/TZ 0.16 0.16 0.16 0.16
M06-2X/DZ 0.11 0.10 0.10 0.11
M06-2X/TZ 0.10 0.10 0.09 0.11
MP2/DZ 0.09 0.08 0.08 0.08
MP2/TZ 0.05 0.04 0.04 0.05

a Averaged over ten pairs of structures.

Table 7. Mean Unsigned Deviations (kcal/mol) for
Hexamers NH3(H2O)5 for Four Models of Point Charges in
the EE-3B Approximation Calculated with the TZ Basis
Seta

M1 M2 M3 CM4

EE-PA
PBE 0.66 0.58 0.53 0.70
B3LYP 0.75 0.73 0.61 0.86
M06-2X 0.55 0.50 0.39 0.63
MP2 0.62 0.59 0.49 0.69

EE-3B
PBE 0.35 0.34 0.33 0.37
B3LYP 0.09 0.09 0.06 0.10
M06-2X 0.35 0.34 0.34 0.36
MP2 0.09 0.09 0.08 0.10

a Deviations in absolute electronic energies averaged over two
structures.
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should be considered just as a way to show the sensitivity or
insensitivity to choice of charge set.

In the rest of this article and in all tables, the 6-31+G(d,p)
basis will be abbreviated DZ, and the 6-311++G(2d,2p) basis
will be abbreviated TZ. In the rest of the article the combination
of a density functional and a basis set or of a wave function
method and a basis set will be called a level.

We obtain our best estimates of the energy E by a standard
type of extrapolation procedure, namely

E(extrap) ) QCISD(T)/6-311+G (d,p) + MP2/TZ-
MP2/6-311+G(d,p) (1)

3. Results and Discussion

3.1. Full Calculations of Tetramers and Pentamers. Tables
2 and 3 show the energies (relative to the ring configuration)
of the structures of the tetramers and pentamers used in this
paper as calculated at various levels of theory.

The results calculated with DFT are very sensitive to the basis
set. In the case of tetramers the energies calculated with the
small DZ and 6-311+G(d,p) basis sets are closer to the
CCSD(T)/DZ values calculated here and to the QCISD(T)29/
6-311+G(d,p) results taken from ref 16 than are the energies
calculated with the larger TZ basis set.

As was found previously for small water clusters,1 the results
obtained by MP2 and CCSD(T) are in semiquantitative agree-
ment with each other in our calculations. The differences, with
the DZ and 6-311+G(d,p) basis sets, do not exceed 0.38 kcal/
mol in either Table 2 or Table 3. The energy ordering of
tetramers agrees for all the methods except PBE and M06-2X;
PBE is the only method that finds structure E to be more
favorable than D, and M06-2X predicts structure C to be lower
in energy than structure B. The results of the B3LYP and M06-
2X methods with the DZ basis set are close to MP2, CCSD(T)/
DZ, and QCISD(T)/6-311+G(d,p) for the B and D structures,
but for the C structure the results differ by more than 1 kcal/
mol.

In the case of pentamers the extrapolated calculation predicts
that structure B is the lowest-energy structure, but most
nonextrapolated calculations predict that the energy of the ring
configuration A is lower. The reason why density functional
theory and wave function theory give different trends is
unknown. However the main focus of the present study is how
well the EE-MB for a given level reproduces a full calculation
for a given level, not the accuracies of the individual levels.
The EE-MB is considered useful if it can reproduce a full
calculation at a given level with a mean deviation smaller than
a reasonable expectation of the error in the full calculation.

3.2. EE-MB Results for Absolute Energies of Tetramers
and Pentamers. In order to evaluate the usefulness of the
electrostatically embedded many-body method in the case of
ammonia-water clusters, we compare their predicted energies
to the results of the full calculations at each level of theory.
Table 4 shows the mean unsigned deviations (MUDs) between
the electrostatically embedded two- and three-body calculations
for tetramers and pentamers and the full calculations. As was
anticipated from studies of pure water clusters1 the errors of
the EE-PA calculations are 5-10 times larger than the errors
of EE-3B calculations. Additional tables given in the Supporting

Information show that the errors in the pentamer energies are
larger than the errors of the tetramers; for tetramers the MUDs
with the M3 charge set do not exceed 0.10 kcal/mol per
monomer for EE-PA and 0.023 kcal/mol per monomer for EE-
3B; for pentamers these MUEs rise to 0.17 kcal/mol per
monomer and 0.084 kcal/mol per monomer for EE-PA and EE-
3B, respectively.

Almost all results show that the errors of calculations with
M1 and CM4 charges are largest, while the calculations with
M3 charges are the most accurate. That means that the
electrostatically embedded many-body calculations of these
mixed clusters are more accurate with larger charges on either
kind of monomer. The EE many-body calculations for water
clusters show the same trends.1 It is, however, important to
keep the comparison of charge models in context; that is,
none of the charge models yields unacceptably large errors.
In particular, the largest deviation in the MUD for any two
sets of charges (at a given level of theory) never exceeds
0.35 kcal/mol at the EE-PA level of theory or 0.04 kcal/mol
at the EE-3B level of theory.

3.3. EE-MB Results for Relative Energies of Tetramers
and Pentamers. With five structures, there are ten pairs of
structures, and it is interesting to test how well EE-MB can
predict these relative energies. Table 5 shows the results for
tetramers, and Table 6 shows them for pentamers. Both tables
show the mean unsigned deviation of the electrostatically
embedded pairwise and three-body calculations of relative
energies as compared to full calculations at the same level. The

Figure 2. Structural isomers of NH3(H2O)4 (pentamers) used
in this work.
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M06-2X, MP2, and CCSD(T) methods show the best agreement.
The magnitudes of the mean unsigned deviations are encourag-
ingly small; with the M3 model charges the mean unsigned
deviations are 0.16-0.76 kcal/mol (average: 0.41 kcal/mol) for
EE-PA (top halves of Tables 5 and 6) and 0.01-0.31 kcal/mol
(average: 0.10 kcal/mol) for EE-3B (lower halves of Tables 5
and 6).

Note that the deviations from the full result due to truncating
the expansions at second order (top halves of Tables 5 and 6) are
smaller than the typical deviation of the full calculations from the
extrapolated ones in Tables 2 and 3, and the deviations due to
truncating at third order (lower halves of Tables 5 and 6) are even
smaller. Thus the combination of the truncated many-body expan-
sions with DFT and/or MP2 calculations provides economical
“model chemistries”30–33 that should be as useful as the untruncated
DFT and MP2 calculations for many applications but at consider-
ably reduced cost for large systems.

3.4. Full Calculations and EE-MB Results for Hex-
amers. The hexamer is the hardest test of the usefulness of EE-
MB because the PA and 3B approximations omit the most
interactions for these largest clusters. Our full calculations of
the NH3(H2O)5 clusters show that the cage structure is more
favorable than the ring one. The energies (in kcal/mol) of the
cage geometry of the NH3(H2O)5 hexamer relative to the ring
geometry as predicted by full calculations are -2.02 for PBE/
TZ, -1.28 for B3LYP/TZ, -5.69 for M06-2X/TZ, and -2.96
for MP2/TZ. This shows that, of four full calculations, the M06-
2X/TZ method predicts the largest energy gap between these
two structures.

Table 7 shows that the EE-MB method agrees well with full
calculations for the hexamer configurations. For the M3 charges,
the MUD per monomer for hexamers does not exceed 0.10 kcal/
mol per monomer for the EE-PA method and 0.055 kcal/mol
per monomer for the EE-3B method. The results for hexamers
show the same charge trend as was observed in tetramers and
pentamers, namely that the deviation between the full and EE-
MB calculation is smaller when the charges of all atoms in the
water and ammonia molecules are larger, as in the M3 model
charges. The EE-PA calculations with the M06-2X and MP2
methods show the best agreement with full calculations, while

for EE-3B calculations the B3LYP and MP2 show the smallest
truncation errors.

4. Conclusions
The present test of the electrostatically embedded many-body
method is an important step in its validation because we consider
mixed clusters with the same kinds of choices for the charge
models that were previously successful for pure water clusters.
Furthermore, the polarization of ammonia has new aspects
because it is nonplanar. Therefore, it is encouraging that our
calculations show that the electrostatically embedded three-body
approximation is very accurate for calculations of small
ammonia-water clusters (tetramers, pentamers, and hexamers),
and the electrostatically embedded pairwise additive approxima-
tion also provides useful accuracy. The success for clusters with
mixed electrostatics, the good scaling properties of the pairwise
and three-body approximations, the fact that the error per
monomer does not increase when the size of the cluster
increases, and our recent demonstration34 that the truncated
expansions can yield accurate and convenient gradients are all
promising features for future applications to large systems.
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Abstract: When plotting different orbitals with consistent
contour values, one can create illusions about the relative
extension of charge distributions. We suggest that the
comparison is not biased when plots reproduce the same
fraction of the total charge. We have developed an
algorithm and software that facilitate this type of visualiza-
tion. We propose superimposing molecules and associated
orbitals, and creating cross-sections by selecting a par-
ticular part of the orbital limited by pre-defined planes.

Molecular orbitals and the related electron densities are basic
molecular features of interest to chemists. The values of electron
density in a molecular fragment and the bonding/antibonding
character of the orbital contribute to the chemical properties of
this fragment. Therefore, practically all electronic structure codes
give their users an option to access molecular orbital data, either
in the form of the coefficients associated with basis functions
or as volumetric data with values of the orbital or the related
electron density at each point of a predefined grid. Many
programs have been developed to visualize orbitals and/or
electron density, and they are in common use by the community
of computational chemists.1–3 Orbitals and electron densities
are typically visualized as finite volumes limited by a boundary
defined by a preselected contour value (CV). On occasion, 2D
maps, which are cross-sections of the finite volumes, are
prepared with marked isovalues of the presented quantity.

Interestingly, plotting an orbital or electron density with a
predefined contour value seems to be the only option imple-
mented in the major visualization software packages.1–3 Simi-
larly, when comparing molecular orbitals or electron densities
of different systems, one usually prepares plots using consistent

CVs. This approach works well when the charge distributions
do not differ much in their spatial extension. We found,
however, the same approach to be misleading when the studied
charge distributions span a broad range of extension. The
problem becomes particularly relevant when dealing with
orbitals, which are characterized by very different orbital
energies, and therefore different electron binding energies. This
results from the long-range asymptotic behavior of bound-state
wave functions and orbitals:4,5 e.g., the occupied Hartree–Fock
orbitals decay as exp [-(-2εHOMO)1/2r],4 where εHOMO is the
orbital energy of the highest occupied orbital. Here we will focus

* To whom correspondence should be addressed. E-mail:
maharan@chem.univ.gda.pl (M.H.); m.gutowski@hw.ac.uk (M.G.).

† University of Gdańsk.
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Figure 1. (a) Singly occupied molecular orbitals of the dipole-
bound intermediate (ClH · · ·NH3)- (left), the proton-transferred
species (Cl- · · ·NH4

+)- (center), and, for comparison, the
neutral Rydberg radical (NH4

0) (right). The orbitals were
plotted using a contour value (CV) of 0.005 bohr-3/2. (b)
Positive part of the orbital (pink in part a)) plotted with different
CVs (in bohr-3/2).
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on molecular anions, though the visualization of orbitals for
neutral and cationic species encounters similar problems, e.g.,
when comparing Rydberg and valence orbitals of neutral species.

We will use two examples from our recent studies on
molecular anions: an anionic complex of ammonia and hydrogen
chloride,6 and tautomers of an anionic nucleic acid base,
guanine.7–10 The selected systems cover various types of
molecular anions: a dipole-bound anion,6 a related system, in
which a closed-shell anion is bound to a neutral Rydberg
molecule,6 and valence anions.7–10

The complex of ammonia and hydrogen chloride has been a
subject of our recent study.6 The neutral system has a hydrogen-
bonded (ClH · · ·NH3) structure in the gas phase.11,12 Since it
has a dipole moment of ca. 4.15 D, it supports a dipole-bound
state with the excess electron attached to NH3 (Figure 1a, left),
and the calculated electron vertical attachment energy is 0.03
eV.6 The excess electron attachment modifies the potential
energy surface of (ClH · · ·NH3) and promotes an intermolecular
proton transfer, with the global anionic minimum having the
(Cl- · · ·NH4

+)– form (Figure 1a, middle), and the excess electron
remains bound to the nitrogen site, but with a much larger
binding energy, 0.51 eV.6 The latter anionic complex can also
be characterized as a Rydberg radical, (NH4)0 (Figure 1a, right),
polarized by Cl-. The isolated, fully symmetric (NH4)0 radical
is characterized by a vertical ionization potential of 5.08 eV.6

The significant differences in electron binding energies among
(ClH · · ·NH3)-, (Cl- · · ·NH4

+)–, and (NH4)0 should be reflected
in the diffuseness of the singly occupied molecular orbital
(SOMO). The corresponding SOMOs are presented in Figure
1a and were prepared according to the common practicesa
consistent CV of 0.005 bohr-3/2 was selected. Surprisingly, the
SOMO of (Cl- · · ·NH4

+)– seems to be more diffuse than that
of (ClH · · ·NH3)-, even though the former is characterized by
an electron binding energy 1 order of magnitude larger than
the latter. Below we demonstrate how this illusion develops and
how to avoid it.

In Figure 1b we plotted bulky parts of the SOMOs using
different contour values: 0.007, 0.0035, 0.001, and 0.0007
bohr-3/2. For CV ) 0.007 bohr-3/2 the orbital bulb of

(ClH · · ·NH3)- is much smaller than for (Cl- · · ·NH4
+)– or

(NH4)0. However, the opposite size relation might be deduced
for CV ) 0.0007 bohr-3/2. Clearly, the visualization of
molecular orbitals with the same CV value might fail to provide
information about their relative sizes.

An important observation is that the fractions of electrons
(Fe) contained in the volumes determined by the same CV value
might be very different (Figure 1). For example, the SOMOs
presented in Figure 1a reproduce 12.3% of e for (ClH · · ·NH3)-,
85.3% for (Cl- · · ·NH4

+)- and 96.3% for NH4
0. Moreover, it

requires quite a small CV value to reproduce a significant
fraction of e for (ClH · · ·NH3)-. We conclude that the inability
to derive information about the relative orbital sizes is related
to the inconsistent Fe values.

To illustrate the point further, we show in Figure 2 plots of
the SOMO for (ClH · · ·NH3)- and (Cl- · · ·NH4

+)- as a function
of R, where R is the distance from the nitrogen atom along the
Cl-N line in the direction of the main lobes. The SOMO of
(Cl- · · ·NH4

+)- decays much faster than that for (ClH · · ·NH3)-,
as anticipated from the electron binding energies.4 Both orbitals
are normalized to 1, and therefore the maximum value of SOMO
for (ClH · · ·NH3)- must be smaller than for (Cl- · · ·NH4

+)-.
Consequently, if the CV is sufficiently large, then the criterion
SOMO(R) > CV is met only for small values of R for
(ClH · · ·NH3)- but for larger R values for (Cl- · · ·NH4

+)-. This

Figure 2. Decay of the SOMO orbitals. R defines the distance from N along the N-Cl line in the direction of the main lobes of
the SOMOs.

Table 1. Algorithm for Determination of a Contour Value
Corresponding to a Preselected Fraction of the Total
Orbital Charge

1. generate or read-in grid points and the corresponding
volumetric data containing orbital or orbital density values

2. if the orbital values are provided in point 1, calculate the
corresponding orbital density values

3. sort grid points according to the orbital density values
4. loop over sorted grid points and perform numerical integration

of the orbital density starting from the point of the highest
density value

5. stop integration when the integrated value exceeds the
preselected fraction

6. the searched CV is equal to the value of orbital density at the
last integrated point (if plotting electron densities) or to
the properly signed square root of it (if plotting orbitals)
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explains why the plotted orbital is larger for (Cl- · · ·NH4
+)-

than for (ClH · · ·NH3)– for CV ) 0.007 and 0.005 bohr–3/2

(Figure 1). We re-emphasize that in these cases only small
fractions of e are reproduced for (ClH · · ·NH3)-, whereas the
Fe values exceed 0.7 e for (Cl- · · ·NH4

+)-. It requires quite a
small value of CV to have the SOMO of (ClH · · ·NH3)–

described by a lobe larger than that for (Cl- · · ·NH4
+)-,: see

the cases of CV ) 0.001 and 0.0007 bohr-3/2 in Figures 1 and
2. In these cases the Fe values exceed 0.7 e for all three systems.

In Figure 2 we also visualize these ranges of R that have to
be included to reproduce a given value of Fe, and the two
illustrated cases are Fe ) 0.1 and 0.5 e. If the orbital plots were
based on the criterion of the same value of Fe, then the SOMO
of (ClH · · ·NH3)– would be more diffuse than that for
(Cl- · · ·NH4

+)-. This suggests that an unbiased way to visualize
orbitals or electron densities that differ much in the extension
of charge distributions would be to ensure that a consistent and
preselected fraction of the total charge is reproduced in each
plot. The same conclusion was reached by Rauk and Armstrong
in their studies of dipole-bound and valence anions in clusters
involving various hydrogen halides.13–15 The approach, i.e.,
plotting different orbitals in such a way that the same fraction
of electron charge is reproduced, leads to another question: what
are the CV’s that lead to the same and preselected Fe’s? Clearly,
these CV’s might be different for different orbitals. Here we
present an efficient algorithm to determine the desirable CV’s.
The same algorithm can be used to calculate a fraction of the
total charge corresponding to a particular CV. We also suggest
how to graphically present information about the relative
diffuseness of orbitals. First we make a list of a few Fe’s, and
we create all the 3D orbital plots for the preselected Fe’s. Finally,
for each orbital we superimpose plots corresponding to the

preselected Fe’s and we create 2D cross-sections that unravel
information about the relative orbital diffuseness.

The proposed approaches are made available to the scientific
community by providing appropriate software.16 This software
works with volumetric data containing orbitals or orbital
densities. The latter are often referred to as “cube files”.17 They
typically contain the Cartesian coordinates of atoms and a
definition of the grid. The grid is defined by a starting point,
three nonparallel vectors, and the size of the grid (the numbers
of points in each direction defined by the grid vectors). Our
software provides the following functionality: (i) identification
of a CV that corresponds to a preselected value of Fe, (ii)
determination of Fe associated with a given CV, and (iii)
selection of a particular part of the grid limited by a predefined
plane. This selection is made by zeroing the to-be-discarded
part of the grid. The last functionality can be applied many
times: i.e., a few planes can be defined and the grid can be
trimmed to the desired slice of the orbital or the related electron
density. It is up to the user to define desirable Fe’s and limiting
planes, if any. We believe that instructive plots of orbitals and
orbital densities can be generated using the OpenCubMan
software16 in combination with molecular visualization packages
and using “cube files” produced by common quantum chemistry
packages.

A CV corresponding to a preselected Fe is determined using
the algorithm summarized in Table 1. In this algorithm the
charge density is integrated by starting from the most dense
region to the least dense region. The process of density
integration is stopped when a preselected fraction of the charge
has been recovered. The searched CV is equal to the value of

Figure 3. Cross-sections through the density of the SOMO for (a) the dipole-bound intermediate (ClH · · ·NH3)-, (b) the proton-
transferred species (Cl- · · · NH4

+)-, and for comparison, (c) the neutral Rydberg radical (NH4
0). These plots were generated

with VMD1 and OpenCubMan,16 and the resulting contours enclose 0.1, 0.3 and 0.5 e from the inner to the outer shell, respectively.
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orbital density at the last integrated point (if plotting electron
densities) or to the properly signed square root of it (if plotting
orbitals).

Creating a cross-section of an orbital represented on a grid
can be achieved by zeroing a part of the volumetric data above
or below a predefined plane. A given plane is described as

ax+ by+ cz+ d) 0 (1)

where a, b, and c are components of a vector v normal to the
plane and d is a parameter which can be calculated by solving
eq 1 for a given point on the plane. A distance D of any point
p0 ) (x0,y0,z0) from the plane can be calculated using the
equation18

D)
ax0 + by0 + cz0 + d

√a2 + b2 + c2
(2)

Such a definition allows D to have a positive or negative
sign. D is positive if p0 is on the same side of the plane as the
vector v and negative if it is on the opposite side. When a part
of the grid is zeroed by using a plane, each point of the grid is
tested against eq 2, and the value of this point is set to zero or
remains unchanged, if appropriate.

All of the functions presented above have been implemented
in the Open-Source Cubefile Manipulator (OpenCubMan)
program, which is provided free of charge under the GNU
license16 and can be downloaded from the SourceForge Internet
Archive. OpenCubMan was written in the object oriented C++
programming language and is provided as a C++ object
definition. OpenCubMan uses standard C/C++ libraries for all
input/output operations, math, and sorting (qsort function). This
form facilitates incorporating the code into other packages,
libraries, or scripting languages.

The orbitals and orbital densities considered here and
presented in Figures 1, 3, and 4 are based on UHF calculations
for the (ClH · · ·NH3)-, (Cl- · · ·NH4

+)-, and NH4
0 systems as

well as for the valence anions of guanine. The aug-cc-pVDZ
basis set was used for all systems, with additional diffuse
functions for the first three systems.6 The “cube files” with
SOMO orbitals were prepared using the Gaussian03 program.17

They were later modified with the OpenCubMan program16 and
then visualized using the VMD software.1

OpenCubMan was used to determine: (i) the values of Fe

corresponding to preselected CVs (Figure 1) and (ii) the values
of CV corresponding to preselected values of Fe (Figures 3 and
4). The most time-consuming part of the algorithm (Table 1) is
the third step, in which the values of electron density on the
grid are sorted. We typically used a consistent grid of 250 ×
180 × 180 points containing volumetric data for the SOMO
orbitals. Sorting the electron density values on this grid took
about 2 s on the available Intel Pentium 4 computer. The
algorithm was also tested for a larger grid of 64 000 000 points
(400 × 400 × 400) generated for the most diffuse SOMO of
(ClH · · ·NH3)-. The sorting time exceeded 100 s, which is not
significant in comparison with the time required to generate such
a dense grid. Moreover, such extended grids are used only in
very special cases, such as dipole-bound anions with very small
electron binding energies. Therefore, they will not be used in
typical applications.

Next, we visualized the SOMO electron densities for
(ClH · · ·NH3)-, (Cl- · · ·NH4

+)-, and NH4
0 and three preselected

values of Fe, 0.1, 0.3 and 0.5 e, and the results are presented in
Figure 3. For each system we superimposed plots corresponding
to the three Fe values and we created 2D cross-sections that
unravel information about the relative diffuseness of the SOMO
distributions. The cross-sections were produced with OpenCub-
Man using an approach described above. The thickness of the
consecutive layers is the largest for (ClH · · ·NH3)– and the
smallest for NH4

0, thus unraveling that the SOMO of the former
is the most diffuse and that of the latter the least diffuse.

Finally we applied OpenCubMan to visualize SOMOs of
valence anions of guanine. We selected the canonical tautomer
(G) and the most stable anionic tautomer (G1), which we have
studied in the past,7–10 and their structures are shown in Figure

Figure 4. (a) Molecular structures of valence anions of the
canonical tautomer of guanine (G) and the most stable anionic
tautomer (G1). (b) Singly occupied molecular orbitals plotted
using a contour value of 0.05 bohr-3/2. (c) and (d) Singly
occupied molecular orbitals plotted with Fe equal to 0.95 and
0.99, respectively. (e) Selected cross-sections of singly oc-
cupied molecular orbital densities corresponding to 0.6 e. The
SOMO densities for G and G1 are superimposed and distin-
guished with gray and yellow, respectively. All cross-sections,
marked A-I, are available in the Supporting Information
(Figure S-1).
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4a. When the SOMOs of G- and G1– are visualized with the
same CVs of 0.05 bohr-3/2 (Figure 4b), then the corresponding
Fe’s are 0.629 and 0.694 e. Clearly, the 6.5% difference is
significant, though not as large as in the (ClH · · ·NH3)- and
(Cl- · · ·NH4

+)- systems. The calculated electron vertical de-
tachment energies are 0.59 and 2.43 eV or G- and G1-,
respectively. We selected consistent values of Fe of 0.95 and
0.99 e, and the resulting SOMOs are shown in parts c and d of
Figure 4, respectively. The plots illustrate the different bonding/
antibonding character of these orbitals, which leads to different
values of VDE.19 The SOMO is more diffuse for G- than for
G1-, though the differences are much smaller than for the
(ClH · · ·NH3)- and (Cl- · · ·NH4

+)- systems.
Finally, we show a plot that illustrates differences in the

spatial distribution of the excess electron in G- and G1-. In
Figure 4e and Figure S-1 (Supporting Information) we super-
impose both tautomers and the corresponding SOMOs and we
focus attention on nine slices, which are selected by applying
specific planes. For G-, the majority of the excess electron in
localized on the six-membered ring, whereas for G1- the excess
electron is localized on the five-membered ring.

In conclusion, we developed a capability to visualize mo-
lecular orbitals that differ much in the extension of charge
distribution. We recommend that these plots should reproduce
the same fraction of the total charge to avoid illusions that
develop when constructing plots with the same contour values.
The OpenCubMan software facilitates operations on common
“cube files”, allows superimposing molecules and associated
orbitals, and selects a particular part of the orbital limited by
predefined planes.
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Abstract: The electronic structure and low-lying electronic states of a CoIII(diiminato)(NPh)
complex have been studied using multiconfigurational wave function theory (CASSCF/CASPT2).
The results have been compared to those obtained with density functional theory. The best
agreement with ab initio results is obtained with a modified B3LYP functional containing a reduced
amount (15%) of Hartree–Fock exchange. A relativistic basis set with 869 functions has been
employed in the most extensive ab initio calculations, where a Cholesky decomposition technique
was used to overcome problems arising from the large size of the two-electron integral matrix.
It is shown that this approximation reproduces results obtained with the full integral set to a
high accuracy, thus opening the possibility to use this approach to perform multiconfigurational
wave-function-based quantum chemistry on much larger systems relative to what has been
possible until now.

1. Introduction

Seen from an inorganic or bioinorganic vantage point, high-
level ab initio methods are somewhat of a succès d’estime1

(for reviews on inorganic and bioinorganic applications of
the present type of ab initio calculations, see refs 2–4). By
and large, applications of such methods have been limited
to small systems that are of limited interest in inorganic and
bioinorganic chemistry. Of course, this does not mean that
these methods have not been useful at all. Thus, high-level
ab initio calculations have been recently deployed to analyze
the electronic structures of multiply bonded transition metal
and actinide dimer complexes.5 However, it is density
functional theory (DFT) that, in spite of its limited accuracy,

has emerged as the standard method for modeling complex
processes involving transition metals such as metalloenzyme
mechanisms.6–9 The major reason underlying this state of
affairs is of course that much more computational effort is
required with the application of the wave-function-based ab
initio methods. Limitations in terms of the number of atoms
and the size of the basis sets are more severe than they are
in DFT. However, the situation vis-à-vis ab initio methods
is now changing with the development of much more
efficient techniques to treat the basis set problem.

Here, we report an extension of multiconfiguration reference,
second-order perturbation theory (CASSCF/CASPT2),10–12

based on a Cholesky decomposition (CD) of the electron
repulsion integral matrix,13–16 which is considerably faster
than earlier implementations of the same method. Application
of the Cholesky decomposition approach to electronic
structure calculations is not new,17–21 but only very recently22

has the approach been successfully extended to multicon-
figurational wave function models, such as the popular
CASSCF method.10 The general applicability of the CASSCF
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wave function, combined with the accuracy of the CASPT2
correction, affords a unique protocol for unraveling the
subtleties of chemical bonds in transition metal systems. The
computational expediency afforded by the Cholesky decom-
position approach should go a long way toward establishing
the CASSCF/CASPT2 method as a valuable tool in the
theoretical inorganic and bioinorganic chemist’s toolbox.

The Cholesky decomposition-based CASPT2 (CD-CASPT2)
method is illustrated here with calculations on the spin-state
energetics of the low-coordinate imido complex CoIII(diimi-
nato)(NPh). This complex may be regarded as a slightly
simplified C2V model of the closely related, diamagnetic
complex CoIII(nacnac)(NAd) (nacnac ) anion of 2,4-bis(2,6-
dimethylphenylimido)pentane, Ad ) 1-adamantyl), which
has been synthesized and structurally characterized.23 The
diamagnetism of this species, which has been attributed to a
(3dz2)2(3dx2-y2)2(3dxy)2 electronic configuration on the basis
of DFT calculations (where the z direction is identified with
the Co-Nimido axis), is noteworthy in that the σ/ dz2-based
molecular orbital (MO) is occupied preferentially, whereas
the corresponding dxz- and dyz-based π* MOs are left
unoccupied.24 A detailed DFT study,24 including calculations
on the corresponding oxo complex, showed that this elec-
tronic configuration may be attributed to both the low-
coordinate nature of the metal center and the nature of the
imido ligand. However, the DFT studies, where the newer
OPTX-based functionals OLYP and OPBE appeared to be
the most reliable,25 also suggested that there should be
low-lying paramagnetic excited states. Indeed, another
CoIII-imido complex with an S ) 0 ground state, CoIII-
(TptBu,Me)(NAd) (TptBu,Me ) hydrotris(3-t-butyl-5-meth-
ylpyrazol-1-yl)borate), has been found to exhibit spin-
crossover behavior, as a result of the existence of one or
more low-lying, paramagnetic excited states.26,27 Once again,
DFT calculations, especially the OLYP and OPBE function-
als, appeared to nicely capture the experimental scenario.28

That said, the calculation of the spin-state energetics of
open-shell transition metal complexes has long been recog-
nized as a difficult problem for DFT.4 No one functional
appears to perform well for all the problematic cases. A
number of studies comparing the performance of different
functionals vis-à-vis transition metal spin-state energetics
have underscored this problem.29–40

Accordingly, the calibration of DFT spin-state energetics
against high-level ab initio methods is an important goal for
current quantum chemistry method development efforts. In
this study, we shall compare DFT and CASPT2 results on
the vertical spin-state energetics of CoIII(diiminato)(NPh).
We shall also use this model complex to calibrate the CD-
CASPT2 method against the conventional, full integral-based
calculations. Both the CD and conventional CASPT2 cal-
culations were performed with a relativistic double-� plus
polarization (VDZP) basis set, whereas our best results were
obtained using a valence triple-� plus polarization (VTZP)
basis set where only CD-CASPT2 calculations proved
feasible. Given the methodological focus of this study, we
will not provide a comprehensive list of references to the
transition metal imido literature, but instead will refer the
reader to a recent review and references therein.41

2. Methodology

The present study has been carried out in part using the
Cholesky decomposition representation13,15 of electron repul-
sion integrals in all stages of the calculations (integrals, self-
consistent field (SCF), CASSCF, and CASPT2). A brief
review of this approach is given below. Details of the
calculations, the choice of basis set, the active orbitals, and
so forth, are given below. For more details about the
Cholesky decomposition techniques, see the references given.

2.1. Cholesky Representation of the Electron Repul-
sion Integrals. The computational complexity of the CASPT2
method11 depends on two parameters: the size of the space
spanned by the complete active space (CAS) reference
function and the size of the atomic basis set. The former is
determined by the choice of the active space and grows
factorially with the size of the active space. At present,
CASPT2 calculations are therefore restricted to active spaces
of about 14–16 orbitals. Fortunately, it turns out that suitable
active spaces can be devised even for extended systems,
while ensuring a computationally feasible size of the resulting
CAS expansion.

On the other hand, the convergence of the results with
respect to the size of the atomic basis set can be slow, as in
other ab initio methods. When large basis sets are employed,
the computational bottleneck of the CASPT2 method lies in
the transformation of electron repulsion integrals (ERIs) from
an atomic orbital (AO) to an MO basis. Along with the final
MO integrals, the AO integrals and all partially transformed
integral intermediates are responsible for the significant
storage demands of the CASPT2 method.

A strategy for avoiding the expensive MO transformation
of the entire ERI matrix and the storage of the AO ERIs
derives from the fact that 1/r12 is a positive definite operator
with eigenvalues clustered toward zero. This property allows
for a compact representation of the ERIs by means of an
incomplete CD of the matrix. The Cholesky representation
of AO electron repulsion integrals may be written as13,15

(µν|λσ))∑
J

M

Lµν
J Lλσ

J (1)

where Greek indices denote AOs and Lµν
J is the Jth Cholesky

vector obtained from the matrix decomposition. Due to near
linear dependence in the product space of the AOs, the
number of vectors M needed to numerically represent the
integrals to an accuracy suited for quantum chemical
calculations is significantly smaller than the full dimension
of the integral matrix. For most applications, the CD usually
needs to be converged to an accuracy (δ) no better than 10-4,
and the resulting value of M is only about 3–4 times the number
of atomic orbital basis functions (N). Notwithstanding the very
few applications since its first appearance,14,42,43 the CD
approach has gained interest in recent years as a possible means
to speed up correlated calculations.13,17–20,44

Recasting the equations for the evaluation of Fock matrices
and for the MO transformation of the ERIs directly in terms
of Cholesky vectors results in an immediate reduction in the
computational costs of most ab initio or DFT methods.15–17

Simultaneously, there is also an enormous reduction in
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storage demands compared to conventional integral calcula-
tions. For the standard choice of the CD threshold (δ )
10-4), the disk space required to store the AO basis Cholesky
vectors is usually about 1–5% of the total size of the AO
ERI matrix. The onset of input-output bottlenecks related
to the manipulation of these arrays is therefore shifted to
significantly larger atomic basis sets, when using the CD
approximation. The implementation of the CD-CASPT2
method in this work aims at taking advantage of this
particular aspect of the CD representation of the AO ERIs.
The Fock matrix needed in CASPT2 can be computed
from the AO Cholesky vectors in an efficient way by
employing the recently proposed “local K” screening16 of
the exchange contributions.

A more demanding task is the generation of the right-
hand side (RHS) of the equation system, which determines
the excitation amplitudes. These are directly dependent on
MO ERI elements of the type (pi|qk), where p and q are
either active or secondary orbitals, while i and k are either
inactive or active orbitals. Frozen orbitals are of course
excluded. First, transformed Cholesky vectors Lpi

J are
computed. This task scales as ON 2M, where O is the
number of inactive and active orbitals. Subsets of integrals
are computed as

(pi|qk))∑
J

M

Lpi
J Lqk

J (2)

and the resulting RHS elements are stored on disk. The
assembly of the (pi|qk) integrals scales as O2V 2M, rather
than the ON4 required by a conventional MO transformation
of the ERIs. The gain comes from the reduced prefactor (O
, N), although the overall scaling is still fifth-order.

The present implementation is not yet optimal. The
generation of the RHS elements requires an excessive amount
of reading and writing to disk, and in spite of the out-of-
core handling, a large amount of memory is needed. In future
implementations, this part of the calculation will be more
open-ended in the sense of requiring much less memory, and
the amount of reading and writing will be reduced. We shall
return to the subject of an optimal implementation of CD-
CASPT2 in future publications. Nonetheless, we wish to
stress that the present implementation, although of limited
applicability to large systems, allows us to perform CASPT2
calculations that would be impossible with the conventional
implementation. This is achieved because the CD method
completely bypasses the AO ERIs’ storage bottleneck and
also because it produces the needed MO integrals at reduced
computational costs and input-output overheads. In the
present study, full CASSCF/CASPT2 calculations have been
performed with a basis set consisting of 869 basis functions.
The same CASSCF calculation is an order of magnitude
faster in the Cholesky formulation. A more detailed account
of the application of the present scheme to CASSCF wave
functions has recently been given.22

2.2. Details of the Calculations. The CoIII(diiminato)-
(NPh) model complex used in this study is depicted in Figure
1. The molecule is oriented such that the Co is at the origin,
the imido nitrogen is on the z axis, and the phenylimido and
1,3-propanediiminato groups are in the xz plane. The planes

of the terminal phenyl groups on the diiminato ligand are
perpendicular to the plane of the remainder of the molecule.
This 43-atom C2V model complex may be viewed as a
simplified version of the experimentally studied complex,
CoIII(nacnac)(NAd).23 The S ) 0 ground state of the model
complex was optimized with DFT (PW91 and OLYP/STO-
TZP) using the ADF-2006 program system45 and a Slater-
type triple-� plus double polarization basis set. The structures
so obtained were used in all additional DFT and CASSCF/
CASPT2 calculations (which provided, in effect, vertical
excitation energies). As detailed later, the Co-Nimido distance
was also varied in some limited optimization studies at the
CASPT2 level of theory.

Two different basis sets were employed in the CASSCF/
CASPT2 calculations, both of which were generally con-
tracted atomic natural orbital basis sets including scalar
relativistic effects (ANO-RCC).46,47 This implies that scalar
relativistic effects are included at all levels of theory. The
smaller one was of VDZP quality: Co/5s4p2d1f, N,C/3s2p1d,
and H/2s. With this basis set, we performed calculations
using both conventional integrals and the Cholesky ap-
proximation with two thresholds, δ ) 10-4 and 10-8. The
overall basis set consists of 406 basis functions. The larger
basis set was of VTZP quality (except for the hydrogens):
Co/6s5p3d2f1g, N,C/4s3p2d1f, and H/2s1p. For this basis
set, the total number of basis functions is 869. Only
Cholesky-based calculations were performed with this basis
set. With a threshold of δ ) 10-4, it took 3.5 h (wall-clock
time on a single AMD Opteron 148, 2.2 GHz, equipped with
1 GB of memory) to generate the Cholesky vectors. The
corresponding time with the smaller basis set was 56 min,
while the calculation of the full integral set took 151 min. A
new method was used for the generation of starting orbitals
for this set of calculations. An SCF calculation was per-
formed, and subsequently, the occupied and virtual orbitals
of each symmetry were separately localized using the
recently developed Cholesky localization technique.48 The
localization, especially for the virtual orbitals, considerably
simplified the selection of the physically appropriate orbitals
for the active space.

Different active spaces were investigated for the CASSCF
calculations, and the final choice was to include the five Co
3d orbitals and the two π orbitals (πx and πy) of the imido
nitrogen in the active space. Three 4d orbitals were added
to account for the “double shell” effect for the doubly

Figure 1. Model of the Co-imido complex used in the
calculations.
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occupied 3d orbitals (3dz2, 3dyz, and 3dx2-y2).49 This gives 10
active electrons in 10 orbitals (10in10). The CASSCF natural
orbitals for the 1A1 ground state are depicted in Figure 2
(the three weakly occupied 4d orbitals are not shown). Some
test calculations were performed with a larger active space,
which included also the lone-pair orbitals of the diiminato
nitrogens. Their occupation numbers were, however, very
close to two, which shows that they are not needed in the
active space as long as the electronic states of interest do
not involve charge-transfer excitations. Some of the calcula-
tions have been performed for a single root in each symmetry
and spin. When more than one root was needed, state-average
CASSCF calculations were performed.

All 132 valence electrons plus the Co 3s and 3p electrons
were correlated in the CASPT2 calculations, which used the
standard IPEA Hamiltonian and an imaginary level shift of
0.1 to remove some weak intruder states. The calculations
were performed with the MOLCAS-7 quantum chemistry
software.50

The chemical issue that we sought to address in this project
concerns the spin-state energetics of the CoIII-imido com-
plex; in other words, how much higher are the S ) 1 and S
) 2 states relative to the (experimentally observed) diamag-
netic ground state? Accordingly, CASSCF/CASPT2 calcula-
tions were performed for the two lowest singlet, triplet, and
quintet states in each of the four irreducible representationssin
all, 24 electronic states. It turns out that they all have energies
below 4 eV, relative to the 1A1 ground state, and it is possible
that additional low-lying states would have been found in
this energy interval, had the number of roots been extended
further. However, for purposes of determining several (∼10)
of the lowest electronic states and for a comparison of
CASPT2 and DFT energetics, we believe that we have
calculated a sufficient number of electronic states.

Density functional calculations were performed for the first
state in each symmetry and spin. In some cases, a second
state was also computed by locking the number of occupied
orbitals in each symmetry. These calculations were per-
formed using a variety of exchange-correlation functionals
and a Slater-type triple-� plus double polarization basis set.
A C2V symmetry constraint was used. The DFT calculations
were performed with the ADF program.45

3. Results

We shall present two sets of results. First, we present the
data obtained with the VDZP basis set where the Cholesky
decomposition technique has not been used. Subsequently,
we shall illustrate the use of the Cholesky technique and
compare results obtained with the VDZP and VTZP basis
sets. As we shall see, the two sets of results are very similar
and most of the analysis can therefore be done at the VDZP
level.

3.1. The Electronic Structure of CoIII(diiminato)(NPh).
Here, we describe the different CASPT2 results obtained with
the VDZP basis set. The calculations were first performed
with a PW91 optimized geometry for the 1A1 state, with a
Co-imido distance of 1.653 Å. The 10in10 active space
described above was used. CASPT2 calculations were
performed for the lowest singlet, triplet, and quintet states
in each symmetry. The seven strongly occupied active
orbitals for the 1A1 state are shown in Figure 2.

Vertical electronic excitation energies for the lowest triplet
and quintet states in each symmetry are presented in Table
1, where we have used the following orbital labels: b1 and
b1* are the “in-plane” Co-Nimido π orbitals and b2 and b2*
are the “out-of-plane” Co-Nimido π orbitals. The CASPT2
calculations yield a closed-shell singlet as the ground state
consistent with the observed diamagentism of CoIII(nacnac-
)(NAd). There are, however, two low-lying triplet excited

Figure 2. The active molecular orbitals in the CoIII(diiminato)(NPh) complex (except the 4d orbitals). A 0.05 au-3 level set
surface was employed. Occupation numbers are shown in parentheses.

Table 1. The Lowest Excited Triplet and Quintet States in
CoIII(diiminato)(NPh) (Energies in eV) Using a PW91
Ground-State Geometry

state configuration energya

1A1 (3dz2)2(3dx2-y2)2(3dyz)2(b1)2(b2)2

3B2 3dx2-y2 f b2* 0.14(0.16)
3B1 3dxy f b2* 0.24(0.26)
5A2 3dx2-y23dz2 f b1*b2* 0.52(0.57)
5A1 3dz23dxy f (b2*)(b2*) 0.60(0.65)
3A2 3dz23dxy f (b2*)2 1.11(1.19)
5B1 3dx2-y23dxy f (b1*)(b2*) 1.64(1.77)
5B2 3dxyb2 f b1*b2* 1.85(1.99)
3A1 b2 f (b2*) 1.85(1.93)

a Energies obtained with a CASPT2 Co–Nimido optimized
distance within parenthesis.
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states: 3B1 at 0.24 eV and 3B2 at 0.14 eV. A reoptimization
of the geometries for these states may well change the
relative ordering of the states. Moreover, the energy differ-
ences are so small that they are within the error limits of the
CASPT2 method.

As previously discussed,24 the electronic structure of the
1A1 state is of unusual interest. There is a double bond
between Co and the imido nitrogen consisting of two
π-bonding orbitals, but there is no net Co-Nimido σ bond,
which is quite extraordinary. As may be seen from the natural
orbital occupation numbers in Figure 2, the wave function
is somewhat multiconfigurational, with occupation numbers
for the antibonding orbitals of 0.13 and 0.22, respectively.
The reason for the absence of a σ bond is the double
occupancy of the 3dz2 orbital, which is energetically more
favorable than using it to form a σ bond. Moving electrons
from this orbital to the b1 or b2 orbitals would enable the
formation of a σ bond but at the expense of the π bonds.
However, some of the low-lying excited states (cf. Table 2)
have the 3dz2 orbital singly occupied, resulting in a partial σ
bond and less π bonding (e.g., the state 23B1).

In order to study the energetics as a function of the
Co-Nimido distance, we reoptimized the latter at the CASPT2
level of theory. This led only to a modest change for the
ground state: 1.632 Å (CASPT2) instead of 1.653 Å (PW91).
The new excitation energies are given within parentheses in
Table 1. They are slightly higher than those obtained with
the DFT optimized bond distance. The calculations were then
performed at the PW91 optimized geometry for the 3B2 state,
which has a Co-Nimido bond distance of 1.70 Å. This led to
the surprising result that the triplet energy, for which the
geometry had been optimized with DFT, is higher than the

triplet energy calculated at the singlet geometry. The closed-
shell 1A1 state is still the lowest state, and the excitation
energies have not changed much. In order to study this
problem in more detail, a set of calculations were performed
where only the Co-Nimido distance was varied, keeping all
of the other geometry parameters at the singlet geometry.
The results are shown in Figure 3 for the three states of
lowest energy.

At the CASPT2/VDZP level, the ground state has a
minimum at R(Co-N) ) 1.632 Å; the next state, 3B1, at
1.661 Å, is considerably shorter than the 1.70 Å of the DFT
triplet geometry. The third state, 3B2, has a minimum at the
same distance. The three curves are almost parallel, indicating
that the excitation energies are not very dependent on the
geometry. Of course, this conclusion could change if other
geometry parameters were also varied.

CASPT2 calculations were also performed using an OLYP
optimized geometry, which is very similar to the one used
above and has the same Co-Nimido distance (1.653 Å). The
results were very similar to those discussed above with one
striking difference: the CASPT2 energy of 1.85 eV for the
3A1 state with the PW91 ground-state geometry is now
reduced to 0.99 eV (with the OLYP ground-state geometry).
The reason for this is convergence to a different root in the
CASSCF calculation, which is not surprising in view of the
many near-degeneracies involved in this system. Depending
on the starting geometry, two different calculations may
therefore converge to different roots if they are close in
energy. To explore the electronic structure in more detail,
we therefore decided to extend the calculations to two roots
in each symmetry. In total, 24 electronic states were
computed (singlets, triplets, and quintets in each symmetry).
The resulting energies are presented in Table 2.

The energies for the first root in each symmetry and spin
are very similar to the energies presented in Table 1 with
one exception. Comparing the two tables, we see that in one
case the single root calculations have converged to the second
state instead of the first. This can of course happen, especially
when roots are as closely spaced as they are here. The other
excitation energies are, however, very similar, and the wave

Table 2. Vertical CASPT2/VDZP Energies (eV) of the Two
Lowest Excited Singlet, Triplet, and Quintet States in Each
Symmetry for CoIII(diiminato)(NPh) Using an OLYP
Optimized Geometry for the Lowest Singlet State

state configuration energya

11A1 (3dz2)2(3dx2-y2)2(3dxy)2(b1)2(b2)2

13B2 3dx2-y2 f b2* 0.11 (0.14)
13B1 3dxy f b2* 0.15 (0.24)
23B1 3dz2 f b1* 0.52
15A1 3dz23dxy f b1*b2* 0.59 (0.60)
15A2 3dx2-y23dz2 f b1*b2* 0.59 (0.52)
23B2 3dxy f b1* 0.65
11B2 3dx2-y2 f b2* 0.83
11B1 3dxy f b2* 0.84 (0.84)
13A1 3dz23dx2-y2 f (b2*)2 0.96 (1.85)b

13A2 3dx2-y23dxy f (b2*)2 1.04 (1.11)
21B2 0.73(3dz2 f b2*) - 0.51(3dxy f b1*) 1.07
23A2 3dz23dx2-y2 f b1*b2* 1.35
23A1 3dz23dxy f b1*b2* 1.48
21B1 3dx2-y2 f b1* 1.52
25A1 3dx2-y23dxyfb1*b2* 1.54
15B1 3dx2-y2b2 f b1*b2* 1.71 (1.64)
15B2 3dx2-y2b1 f (b1*)(b2*) 1.89 (1.85)
25B2 3dxyb2 f b1*b2* 1.91
25B1 3dxyb1 f b1*b2* 2.00
25A2 3dz23dxyb1 f b1*(b2*)2 2.56
11A2 b1 f b2* 3.14
21A1 0.61(b1 f b1*) + 0.56(b2 f b2*) 3.47
21A2 b2 f b1* 3.90

a Values within parentheses are obtained using one root only.
b Convergence to a different root (cf. Table 1).

Figure 3. Energy of the three lowest states in the CoIII(di-
iminato)(NPh) complex as a function of the Co-Nimido distance.
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functions have the same orbital occupancy. We can therefore
limit ourselves to the two-root calculations in our further
discussion.

Two triplet states have very low energies: 3B1 and 3B2.
Their energies are so close to zero that we cannot conclu-
sively determine the real ground state in this system. The
accuracy of these calculations (or any other calculation) is
certainly not better than 0.1 eV. Our results thus indicate
that three electronic states are very close in energy, and they
are all good candidates for the ground state. The density of
states is very high: there are 20 electronic states below 2.0
eV. Several of these are doubly excited with respect to the
1A1 ground state. The reason for this high density of states
is that there are three doubly occupied 3d orbitals, which
are very close in energy in the ground state: 3dz2, 3dx2-y2,
and 3dxy.

3.2. CD-CASPT2 Calculations. In this section, we shall
study the effect of the basis set on the results obtained above.
To perform calculations with a VTZP basis set (869 ANO-
RCC functions), we needed to invoke the Cholesky decom-
position technique. We started by calibrating this method-
ology against full integral calculations with the VDZP basis
set used above. The results of this comparison are shown in
Table 3, which gives the total CASPT2 energies obtained
with and without CD. A threshold of 10-4 was used in
decomposing the ERI matrix. The energy difference between
the two sets of calculations is almost constant and on the
order of 2 × 10-3 Eh (about 0.07 eV), which is an order of
magnitude larger than the threshold used. More importantly,
the relative energies of the states are affected by less than
0.01 eV. [There is one exception: the 21A2 state, where the
CD calculation converged to a different electronic state.]
Calculations with a threshold of 10-8 gave absolute energies
with an accuracy of about 10-6 au and relative energies
identical to those obtained with full integrals. We therefore

conclude that the CD calculations are accurate. On the basis
of our earlier experience, we would expect the accuracy to
be even better with the larger basis set.22

Table 4 presents the wall-clock times obtained on an AMD
Opteron 148 (2.2 GHz) PC for one single-root calculation
(1A1). With the VDZP basis set, the generation of the
Cholesky vectors is 3 times faster than the full integral
calculation. The increase in speed is much larger for the
VTZP basis set, where the calculation of the Cholesky
vectors takes 217 min. The full integral calculation could
not be performed in this case, but it may be estimated to be
around 4500 min from the timing obtained for the VDZP
basis set. In other words, the CD method results in a speedup
by about a factor of 20. The overall CASSCF/VDZP
calculations are a factor of 10 faster, a speedup that should
also increase for the larger basis set. For the VTZP basis
set, each CASSCF iteration takes 3.88 min, underscoring the
effectiveness of the CD technique. The speedup of the
CASPT2 calculations is less impressive. Not much is gained
in CPU time, and I/O times overwhelmingly dominate the
calculations. The reason for this was explained in the

Table 3. Total CASPT2/VDZP Energies with and without
the Cholesky Techniquea

state CASPT2 CD-CASPT2 energy difference

11A1 -2364.79544388 -2364.79295568 -0.00248820
21A1 -2364.67390089 -2364.67141410 -0.00248679
11B1 -2364.77033932 -2364.76785555 -0.00248377
21B1 -2364.74534751 -2364.74287943 -0.00246808
11B2 -2364.77072043 -2364.76830977 -0.00241066
21B2 -2364.76208911 -2364.75960783 -0.00248128
11A2 -2364.68597422 -2364.68331489 -0.00265933
21A2 -2364.65783067 -2364.69289360 0.03506293
13A1 -2364.76595240 -2364.76355308 -0.00239932
23A1 -2364.74697718 -2364.74449320 -0.00248398
13B1 -2364.79568110 -2364.79317394 -0.00250716
23B1 -2364.78222016 -2364.77976550 -0.00245466
13B2 -2364.79732094 -2364.79489954 -0.00242140
23B2 -2364.77725821 -2364.77474030 -0.00251791
13A2 -2364.76313971 -2364.76067077 -0.00246894
23A2 -2364.75177134 -2364.74936282 -0.00240852
15A1 -2364.77946626 -2364.77696359 -0.00250267
25A1 -2364.74481204 -2364.74236741 -0.00244463
15B1 -2364.73843766 -2364.73598410 -0.00245356
25B1 -2364.72771500 -2364.72518246 -0.00253254
15B2 -2364.73200864 -2364.72953416 -0.00247448
25B2 -2364.73100948 -2364.72850268 -0.00250680
15A2 -2364.77947072 -2364.77704933 -0.00242139
25A2 -2364.70713998 -2364.70466298 -0.00247700

a A threshold of 10-4 was used for the Cholesky decomposition.

Table 4. Timing information for the Cholesky calculationsa

VDZP basis

conventional Cholesky VTZP basis

integrals 150 56 217
CASSCF/itb 4.25 0.41 3.88
CASPT2 383 (24) 163 (20) 898 (232)

a Wall times are given in minutes (CPU time within parentheses
for the CASPT2 calculations). b Wall time per CASSCF iteration.

Table 5. A Comparison of the CASPT2 Relative Energies
(eV) with the VDZP and VTZP Basis Sets

state VTZP VDZP state VTZP VDZP

11A1 0.00 0.00 23A2 1.39 1.35
13B1 0.02 0.15 21B1 1.55 1.52
13B2 0.18 0.11 25A1 1.57 1.54
23B1 0.59 0.52 15B1 1.70 1.71
23B2 0.63 0.65 15B2 1.98 1.89
15A1 0.63 0.59 23A1 2.03 1.48a

15A2 0.64 0.59 25B1 2.40 2.00a

11B2 0.86 0.83 25B2 2.45 1.91a

11B1 0.87 0.84 25A2 2.59 2.56
13A1 0.90 0.96 21A2 2.82 3.90a

21B2 1.04 1.07 11A2 3.13 3.14
13A2 1.05 1.04 21A1 3.46 3.47

a Convergence to different roots.

Table 6. Relative Electronic Energies Erel, Thermodynamic
Energies (Urel),b or Enthalpies (Hrel)c and Relative Gibbs
Free Energies Grel Based on OLYP/STO-TZP Geometries
and Harmonic Frequencies and the Ideal Gas
Approximation at 298.15 Ka

state Erel Urel/Hrel Grel

11A1 0.00 0.00 0.00
13B2 5.38(0.23) 4.96(0.21) 4.43(0.19)
13B1 10.67(0.46) 10.17(0.44) 9.29(0.40)
23B1 13.90(0.60) 11.78(0.51) 12.84(0.56)

a The energies shown are in kcal/mol (eV). b The thermo-
dynamic energy U is the sum of the electronic energy E, the
zero-point energy, and translational, vibrational, and rotational
energies at 298.15 K. c Trends in Urel and Hrel are identical since
the work term RT in the latter cancels out.
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Methodology section, and we expect that future versions of
the MOLCAS program system will result in substantially
improved timings. Nevertheless, we have demonstrated that
a CASSCF/CASPT2 calculation with 869 ANO-RCC basis
functions can be performed on a normal PC in less than 20 h
of wall-clock time.

The results for the VTZP calculation are presented in Table
5 where they are compared with the VDZP results described
above. Generally, the results are very similar. In a few cases
the VTZP calculations of the second root converged to a
different state, but we shall not study these cases here. They
only mean that there are more low-lying states of the
symmetry in question, and to obtain all of them correctly,
one would have to increase the number of states included in
the calculations. In most other cases, the energy differences
are less than 0.1 eV with one exception. The 13B1 state is
now the second state and is virtually degenerate with the
11A1 state. Remembering that the accuracy of the CASPT2
method is in general no better than about 0.2 eV, these results
make it impossible to conclusively determine the ground
state. All that can be concluded is that there are three
candidates: 11A1, 13B1, and 13B2.

3.3. Free Energy Differences. The question of defini-
tively identifying the ground state cannot be addressed
without including the zero-point energy and entropic effects.
We have therefore computed these quantities for four of the
lowest-energy states, using OLYP/STO-TZP geometries and
harmonic frequencies and the ideal gas approximation at
298.15 K. The results are presented in Table 6. We note
that these adiabatic relative energies are different from the
vertical ones presented above. The changes, however, are small.
Not surprisingly, geometry optimization lowers the energy
of the triplet states, relative to the ground state, the margins
being -0.04 eV for 13B2, -0.06 eV for 13B1, and -0.04
eV for 23B1. Overall, according to Table 6, we still have at
least two and possibly three near-degenerate lowest-energy
states, and we cannot tell, on the basis of calculations alone,
which should be the actual ground state.

4. Comparing CASPT2 and DFT

The CASPT2 results, which we estimate to be accurate to
about (0.2 eV, provide valuable calibration for DFT
calculations of the energies of several of the low-lying spin
states of CoIII(diiminato)(NPh). Seven low-lying states were
calculated with seven popular exchange-correlation func-
tionals at the OLYP, S ) 0, ground-state geometry. Table 7

presents a comparison of the DFT/TZP and CASPT2
energetics. According to Table 7, the B3LYP* functional,
which has a reduced amount (15%) of Hartree–Fock
exchange relative to B3LYP (20%), appears to be in the best
agreement with CASPT2. The more widely used B3LYP
functional performs slightly worse, predicting (albeit by a
margin of only 0.09 eV) a triplet 3B2 ground state,51 which
is inconsistent with the experimentally observed diamagne-
tism of CoIII(nacnac)(NAd). In contrast, the classical pure
functionals BLYP, PW91, and BP86 appear to exaggerate
the instability of the higher-multiplicity states. The newer
OPTX-based pure functionals25 OLYP and OPBE are
somewhat better in this respect. Between OLYP and OPBE,
the energetics provided by OPBE appears to be in slightly
better agreement with CASPT2 than those obtained with
OLYP, as indicated by the slightly smaller root-mean-square
(rms) error. The maximum deviations are, however, almost
as large for these functionals as they are for the other pure
functionals. In summary, among the functionals examined,
B3LYP and in particular B3LYP* seem to be the only that
are acceptable, as far as the spin-state energetics of CoIII-
(diiminato)(NPh) are concerned. It will be interesting to see
how well this conclusion might generalize as additional
complexes are examined in similar studies. That said, there
are many examples in the literature where B3LYP (or
B3LYP*) has performed no better than and even distinctly
worse than pure functionals.29–40,52 The development of new,
broadly applicable functionals is therefore very much an
ongoing process.

5. Conclusions

This work, in our opinion, has contributed on three different
fronts.

First, we have shown how CD of the two-electron integral
matrix can be used to drastically simplify electronic structure
calculations of large molecules and with accurate basis sets
and wave-function-based methods. The CD method has been
used in all stages of the calculations from SCF and CASSCF
to CASPT2. The current implementation of this technique
is not yet optimal but still allows calculations with nearly
(and almost certainly somewhat over) 1000 basis functions.
In the future, we expect to be able to use similarly accurate
basis sets in ab initio studies of considerably larger mol-
ecules. Further improvement of the CD-CASPT2 part of our
code50 is needed for achieving this, but the technology is
already at hand. The 43-atom molecule studied here was

Table 7. Comparison of Vertical Excitation Energies (eV) with CASPT2 and DFT

CASPT2 DFT(STO-TZP)

electronic configuration VDZP VTZP OLYP OPBE BLYP PW91 BP86 B3LYP B3LYP*

11A1 (3dz2)2(3dx2-y2)2(3dxy)2(b1*)0(b2*)0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
13B2 (3dz2)2(3dx2-y2)1(3dxy)2(b1*)0(b2*)1 0.11 0.18 0.31 0.19 0.52 0.44 0.43 -0.09 0.07
13B1 (3dz2)2(3dx2-y2)2(3dxy)1(b1*)0(b2*)1 0.15 0.02 0.60 0.55 0.70 0.67 0.66 0.06 0.23
23B1 (3dz2)2(3dx2-y2)1(3dxy)2(b1*)1(b2*)0 0.52 0.59 0.88 0.82 1.08 1.04 1.03 0.24 0.51
23B2 (3dz2)2(3dx2-y2)2(3dxy)1(b1*)1(b2*)0 0.65 0.63 1.35 1.31 1.50 1.46 1.45 0.54 0.83
15A2 (3dz2)1(3dx2-y2)1(3dxy)2(b1*)1(b2*)1 0.59 0.64 1.01 0.84 1.47 1.35 1.34 0.33 0.63
15A1 (3dz2)2(3dx2-y2)1(3dxy)1(b1*)1(b2*)1 0.59 0.63 1.19 1.06 1.63 1.53 1.51 0.47 0.77
max deviationa 0.72 0.68 0.87 0.90 0.88 0.35 0.21
rms deviationa 0.44 0.38 0.68 0.62 0.61 0.22 0.13

a Deviations from the CASPT2(VTZP) results.
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treated with an ANO-RCC-VTZP basis set. With a Cholesky
threshold of 10-4, we can assume an accuracy better than
0.01 eV in the relative energies for 24 electronic states (this
accuracy refers to the error introduced by the finite Cholesky
function threshold). The generation of the Cholesky vectors
with this threshold and the VTZP basis set is estimated to
be about 20 times faster than the full generation of the ERI
matrix. To this should be added the savings in disk storage
requirement, which is reduced by several orders of magni-
tude. The large savings in computer time and resources
combined with the maintained accuracy strongly suggest that
the CD-CASPT2 approach will be the standard in future
applications.

Second, CASPT2 calculations of the spin-state energetics
of a CoIII(diiminato)(NPh) complex have provided valuable
calibration of analogous DFT calculations. Surprisingly, such
calibrations of DFT (vis-a-vis the specific issue of transition
metal spin-state energetics) are quite rare. In this study, we
have calculated seven low-lying spin states of CoIII(diimi-
nato)(NPh) with seven common exchange-correlation func-
tionals and compared the results with CASPT2. The B3LYP*
functional, containing a reduced amount (15%) of exchange
relative to the more widely used B3LYP functional, appears
to be the best. Among the pure functionals examined, the
newer OPTX-based functionals OPBE and OLYP appear to
perform slightly better than older, classic functionals such
as PW91, BLYP, and BP86 but still give unacceptably large
rms error for the computed excitation energies.

Last, this study has also deepened our growing under-
standing of bonding in low-coordinate imido complexes. That
all known CoIII-imido complexes exhibit diamagnetic
ground states certainly appears to be a coincidence in light
of the results obtained in this study. Thus, at least for
CoIII-diiminato-imido complexes, our calculations predict
multiple paramagnetic excited states at very low energies
(perhaps as low as a couple of tenths of an electrovolt) above
the ground state. This is an important facet of the electronic
structure of these complexes that has not yet manifested itself
in experimental studies.23,28 However, as already mentioned,
one or more thermally accessible paramagnetic excited states
have been implicated for a hydrotrispyrazolylborate-sup-
ported CoIII-imido complex.26–28
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Abstract: The electronic properties of single-wall AlGaN2 nanotubes were investigated using
first-principles calculations and generalized gradient approximation. All AlGaN2 nanotubes
considered are semiconductors, but their band structures depend on their chirality and size due
to curvature effect and symmetry. The zigzag AlGaN2 nanotubes are direct band gap
semiconductors, while armchair AlGaN2 nanotubes are indirect band gap semiconductors. The
calculations on the electronic properties of AlN-GaN nanotubes superlattice show that the band
gap engineering can be realized by changing the composition of the AlN-GaN nanotubes
superlattice.

Introduction

Nanotubes have attracted extensive attention for their
intriguing and potentially useful structural, electrical, and
mechanical properties since the discovery of carbon
nanotube (CNT). Theoretically, a number of nanotubes,
such as GaN,1 BN,2 WC,3 BC2N,4 SiC,5 and AlN6

nanotubes, have been predicted. Experimentally, a variety
of nanotubes, such as BN,7–9 BxCyNz,10,11 and AlN,12 have
been successfully synthesized by various methods, such
as pulsed laser deposition, chemical vapor deposition, and
wet chemistry. Recently, M. Remskar classified the
inorganic nanotube (NTs) into six groups, including the
following: oxide NTs, transition-metal chalcogenide NTs,
transition-metal halogenous NTs, mixed-phase and metal-
doped NTs, carbon-, boron-, and silicon-based NTs, and
metal NTs.13 For example, R. Tenne et al. first reported
the transition-metal chalcogenide NTs, WS2, and MoS2,
in 199214 and 1995,15 respectively, and the transition-metal
halogenous NTs, NiCl2, in 1998.16 They also studied the
mechanical property and Raman scattering of WS2 NTs.17,18

It is well-known that the electronic properties of nanotubes
depend on the size (radius) and chirality of the nanotubes.

For single-walled CNTs (SWCNTs), the band gap of
semiconducting SWCNT is inversely proportional to its
diameter.19 As for BC2N nanotube, recent calculations
indicated that both its electronic and optical properties
were size and chirality dependent.4,20

III-V compound semiconductors are important materi-
als in device application. Theoretical calculations indicated
that the band gap of AlN and GaN single-wall nanotubes
can be controlled by varying the size and chirality,1,7

suggesting the applicability to full color flat panel displays.
Experimentally, a bulk ternary semiconductor (AlxGa1-xN)
has been widely studied for its application in devices, such
as quantum well devices.21 Gudiksen et al. reported the
compositionally modulated superlattice nanowires consist-
ing of 2-21 layers of GaAs and GaP for nanoscale
photonics and electronics.22 The superlattices are created
within the nanowires by repeated modulation of the vapor-
phase semiconductor reactants during growth of the wires.
Multielement nanotubes can be expected to provide more
tenability to their physical properties and to meet require-
ments of various applications. To the best of our knowl-
edge, theoretically, the ternary nanotube, including Al,
Ga, and N, has not been studied. In this article, we
investigate the chirality and size dependence of electronic
properties of armchair and zigzag AlGaN2 nanotubes. We
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also study possible band gap engineering by varying the
composition of an AlN-GaN nanotube superlattice.

Calculation Details

We carried out first-principles calculation based on the
density functional theory (DFT)23 and the generalized
gradient approximation (GGA).24 The plane-wave based
pseudopotential method and the CASTEP code were used
in the study.25 The ionic potentials are described by the
ultrasoft nonlocal pseudopotential proposed by Vanderbilt.26

The Monkhorst and Pack scheme of k point sampling was
used for integration over the first Brillouin zone.27 The
Kohn-Sham energy functional is directly minimized using
the conjugate-gradient method.28 The convergence test
indicated that an energy cutoff of 350 eV was sufficient for
the calculations.

Compared to carbon nanotubes, there can be more than
one type of zigzag or armchair AlGaN2 nanotubes, depending
on how an AlGaN2 sheet is rolled up (Figure 1a). In this
study, we considered two types of zigzag nanotubes: ZZ1
(n, 0) with n ) 5-16 and ZZ2 (0, n) with n ) 3-8, and
two types of armchair nanotubes: AC1 (n, n) with n ) 3-11
and AC2 (m, m) with m ) 2-5, as shown in Figures 1b-e.
In addition, AlN-GaN (6, 0) nanotube superlattices were
studied. As the cell dimension in the direction of tube axis
is different for different tube chirality, the k points used in
the calculations are adjusted accordingly so that its density
in the reciprocal space remains more or less the same, and
the number of k points used in the calculations are 12 for
ZZ1, 6 for ZZ2, 14 for AC1, and 6 for AC2 types of AlGaN2

nanotubes, respectively. The k points used in the calculations
of the AlN-GaN nanotube superlattices are 4. Good conver-
gence was obtained with these parameters, and the total
energy was converged to 2.0 × 10-5 eV/atom. A large
supercell dimension with a wall-wall distance of 10 Å in
the plane perpendicular to the tube axis was used to avoid
interaction between the nanotube and its images in neighbor-
ing cells. The unit is periodic in the direction of the tube.
The geometrically optimized nanotubes were used for band
structure and optical property calculations.

As an indication of stability, the binding energy is esti-
mated from the formula

Eb ) |Etube - nµAl - nµGa - 2nµN| (1)

where Etube is the energy of the AlGaN2 nanotube. µAl, µGa,
and µN are chemical potentials of Al, Ga, and N atoms,
respectively. n is the number of Al (or Ga) atoms in the
nanotube.

Results and Discussion

A number of possible structures for planner AlGaN2 were
considered. Our total energy calculations indicated that the
geometry with Ga and Al atoms separated by N atoms
(Figure 1a) is most stable due to the lowest total energy.
Other structures, such as the one with Ga atoms bonding to
Al atoms, are less stable than that shown in Figure 1a due
to the higher energy. The covalent bond lengths in the fully
optimized structures are given in Table 1. For AlN and GaN
nanotubes, the structure details are in good agreement with
those of refs 1 and 6. The Al-N and Ga-N bond lengths in
AlGaN2 nanotubes are slightly less than those in AlN and
GaN nanotubes.

Figure 2 shows the total energies per AlGaN2 unit of the
optimized AlGaN2 nanotubes as a function of the tube
diameter. The energy of the corresponding AlGaN2 sheet is
also shown for comparison. We can see that the total energies
of all four types of AlGaN2 nanotubes converge to that of
the AlGaN2 sheet as the diameter of the tubes increases. The
energy difference between the tube and sheet decreases from
0.58 to 0.04 eV with the increase of the tube diameter.
Furthermore, the total energies per AlGaN2 unit of all four
types of AlGaN2 nanotubes with the same size are essentially
the same, indicating that the strain energy of an AlGaN2

nanotube, defined as the energy difference between the
AlGaN2 nanotube and the AlGaN2 sheet, does not depend
on its chirality. Figure 3 shows the binding energies of the
optimized AlGaN2 nanotubes as a function of the tube
diameter. Similarly, at the same diameter, the binding
energies of the four types of the AlGaN2 nanotubes are
almost equal, i.e., the binding energy of the AlGaN2 nanotube

Figure 1. Atomic configurations of (a) the most stable AlGaN2 sheet, (b) ZZ1 (14,0), (c) ZZ2 (0,5), (d) AC1 (8,8), and (e) AC2 (4,4)
AlGaN2 nanotubes. The Ga, Al, and N atoms are indicated by brown, pink, and blue spheres. The wrapping vectors of the four
types of nanotubes are shown in (a).

Table 1. Bond Lengths in Different Nanotubes after
Geometry Optimization

nanotube Al-N (Å) Ga-N (Å)

AlN 1.81
GaN 1.86
AlGaN2 1.76 1.84
AlN-GaN 1.80 1.87
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is chirality-independent. However, the binding energy of the
AlGaN2 nanotube is size-dependent due to the curvature
effect. The binding energy increases with the increase of the
diameter, indicating the AlGaN2 nanotubes with larger
diameter are more stable than those with smaller diameter.
Therefore, from the energy point of view, all four types of
AlGaN2 nanotubes may be produced experimentally, al-
though it is easier to grow AlGaN2 nanotubes with larger
diameters due to lower strain energy and higher binding
energy.

Figure 4 shows the variation of the calculated GGA band
gaps of various AlGaN2 nanotubes with the diameter of the
tubes. First of all, all AlGaN2 nanotubes considered are
semiconductors and the band gap of AlGaN2 nanotube
depends on its diameter and chirality. The band gap increases
with an increase of diameter and converges to that of the
AlGaN2 sheet (2.87 eV) when the diameter of the tube
becomes very large. The relatively smaller band gaps for
the AlGaN2 nanotubes with smaller diameters can be
attributed to the curvature-induced strong hybridization
effect. For nanotubes with the same diameter, the AC1
nanotubes have a slightly larger band gap. The band gaps
of the AlGaN2 nanotube are generally less than those of AlN
and GaN nanotubes.1,6 And the band gaps of the AlGaN2

nanotubes are less than those of bulk wurtzite AlxGa1-xN
(0 e x e 1) alloys, which have tunable direct band gaps
between 3.4 and 6.1 eV, depending on the Al content.
Therefore, these AlGaN2 nanotubes can be recognized as
important semiconductors for optoelectronic device applica-
tions over the visible spectral range.

The representative band structures of the four types of
AlGaN2 nanotubes near the Fermi level were demonstrated
in Figure 5. All zigzag (ZZ1 and ZZ2) nanotubes are direct
band gap semiconductors with the bottom of the conduction
energy level and the top of the valence energy level located
at the Brillouin zone center (Γ) (Figure 5a,b). On the
contrary, all armchair (AC1 and AC2) nanotubes are indirect
gap semiconductors, with the bottom of the conduction
energy level located at the Γ point but the top of the valence
energy level at ∼2/3 along the ΓZ direction (Figure 4c,d).
Analysis of electron densities corresponding to the top
valence band of the zigzag AlGaN2 nanotube shows that the
top valence band consists of p orbitals of the nitrogen atoms
next to Al atoms in the direction of the tube axis. These p
orbitals are normal to the tube surface (Figure 6a). For the
armchair AlGaN2 nanotube, the valence top level is attributed
to similar p orbitals of all nitrogen atoms (Figure 6b). These
observations indicate that the electronic properties of the
AlGaN2 nanotubes are chirality-dependent. And the va-
lence top levels in AlGaN2 nanotubes with different chirality
are attributed to the p orbitals from different atoms due to
the difference in symmetry.

Figure 2. The total energies of AlGaN2 nanotubes as a
function of the diameter and a AlGaN2 sheet.

Figure 3. The binding energies of AlGaN2 nanotubes as a
function of the diameter and a AlGaN2 sheet.

Figure 4. Band gaps of the AlGaN2 nanotubes and the
AlGaN2 sheet are shown as functions of their diameters.

Figure 5. Calculated band structures of (a) ZZ1 (14, 0), (b)
ZZ2 (0, 5), (c) AC1 (8, 8), and (d) AC2 (4, 4). The insets show
the electron density of the highest valence energy level.
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The AlN-GaN nanotube superlattices consists of alternat-
ing AlN (6, 0) and GaN (6, 0) segments of different lengths,
i.e. [AlN (6, 0)]x[GaN (6, 0)]1-x. Restuls of our calculations
indicated that Al-N and Ga-N bond lengths in the super-
lattice are very close to those in separate AlN and GaN
nanotubes (Table 1). The band structures of AlN (6, 0)
nanotube, AlN-GaN nanotube superlattice with x ) 0.5 and
a GaN (6, 0) nanotube, illustrated that they are direct
semiconductors (Figure 7). The band gap of the [AlN (6,
0)]0.5[GaN (6, 0)]0.5 nanotube (2.25 eV) is slightly smaller
than that of AlGaN2 (6, 0) nanotube (2.33 eV), which is about
the average of the band gaps of the AlN (6, 0) nanotube
(EAlN ) 2.50 eV) and the GaN (6, 0) nanotube (EGaN ) 1.94
eV). The p orbitals normal to the tube surface of the nitrogen
atoms at the interface of the junction contribute to the top
valence band by the analysis of electron densities of the top

valence band of AlN-GaN nanotube superlattice. A number
of [AlN (6, 0)]x[GaN (6, 0)]1-x nanotube superlattice with
different x were investigated. Figure 8 shows the change of
the band gap of the AlN-GaN superlattices (Es) with x. The
linear dependence of Es on the x implies that Es for a [AlN
(6, 0)]x[GaN (6, 0)]1-x nanotube superlattice with an arbitrary
x can be estimated based on the simple linear interpolation,
Es )xEGaN + (1-x)EAlN.

Conclusions

In summary, first-principles calculations on the electronic
properties of single-wall AlGaN2 nanotubes indicated that
the electronic properties of the AlGaN2 nanotubes are size
and chirality dependent due to the curvature effect and
symmetry. The band gap of the AlGaN2 nanotube increases
with increasing size and converges to that of the planner
AlGaN2. Our calculations also predicted that the band gap
of [AlN (6, 0)]x[GaN (6, 0)]1-x nanotube superlattice can be
engineered by changing the composition. Although the well-
known fact that DFT/GGA underestimates the band gap of
semiconductors, the dependence of the electronic properties
of the nanotubes on their size and chirality are valid. The
theoretical results should be confirmed experimentally.
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Abstract: Benchmark studies of Ln(H2O)1,8–9
3+ (Ln ) La, Lu) have been performed to assess

the calculated properties obtained with local density approximation, generalized gradient
approximation (GGA), meta-GGA, and hybrid functionals, when used with small- and large-
core relativistic effective core potentials and their associated bases. Basis set dependence and
the importance of specific functions to adequately describe the Ln atomic orbitals have been
determined. The lanthanide contraction has been found to be an insufficient metric for
characterizing the quality of a method/basis set combination due to cancellation of the errors.
The electrostatic description obtained by natural population analysis has been examined, and
an alternative partitioning of the valence space, which includes the 6s6p5d4f natural atomic
orbitals, has been proposed.

Introduction

The aqueous chemistry of metal ions has an immense amount
of literature available due to its fundamental importance in
a variety of areas including biological systems, metal
coordination, complexation behavior, and so forth. In the
absence of metal-binding ligands, water molecules will
coordinate to the metal to form the inner coordination shell.
Within the alkali and alkaline earth series, the metal-water
interaction is exclusively ionic in character.1,2 In contrast,
transition metal aquo complexes have coordination geom-
etries that are strongly dependent upon the metal electronic
state due to the participation of the d orbitals in the M-OH2

bond.3 Between these bonding extremes lie the lanthanide
(Ln) and actinide (An) elements, whose f and d orbitals may
participate in bonding with ligating water, but in a manner
that is dependent upon the position of the element within
the period and its oxidation state. In general, earlier An and
Ln may have M-OH2 interactions with some covalent
character, while later in the series the interactions become
more ionic.4

The solution chemistry of trivalent Ln has relevance to
environmental remediation and the terrestrial migration of
fission products at United States Department of Energy
nuclear weapons facilities like the Hanford site. The potential

closure of the nuclear fuel cycle currently proposes liquid/
liquid extraction techniques for separating both 4f and 5f
elements, mandating a fundamental understanding of the
multiscale solution behavior of Ln and An. Using X-ray,
extended X-ray absorption fine structure, and neutron dif-
fraction methods, present experimental capabilities are able
to determine bond lengths and angles that constitute molec-
ular-scale solution geometry in a single phase from averaged
ensembles, while long-range solvent organization is inferred
from the bulk. Structural information within intermediate-
length scales is experimentally formidable because it is buried
in the bulk response of the condensed state. Owing to such
experimental limitations, computational chemistry is a neces-
sary complement to predict the molecular- and mesoscale
solution behavior of f elements. Density functional theory
(DFT) has been used for some time to calculate geometries
and electronic structure of strongly bound Ln(III) complexes.
Within that literature, it has been established that relativistic
effective core potentials (RECPs) can capture the relativistic
effects from all electron scalar-relativistic Douglas-Kroll-
Hess calculations.5 The relativistic effects upon the Ln-X
bond lengths and the calculated Ln contraction have also
been examined.6–8 Both large- and small-core RECPs (and
their associated basis sets) have been developed for Ln and
are often used interchangeably, with little discussion of the
influence of the f electrons upon electrostatic properties,* Author e-mail: auclark@wsu.edu.
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bonding, or the importance of basis sets upon calculated
geometric and electronic structures. Comparisons of small-
and large-core RECP9,10 geometries do reveal longer Ln-X
bond lengths from large-core calculations, presumably
because of poorer treatment of the core-valence correlation
relative to the small-core RECP. The extent to which the 4f
electrons participate in bonding is a topic of current debate
within the literature. While most studies indicate that the 4f
orbitals/electrons do not participate in bonding, some systems
(e.g., lanthanide trihalides) have shown pronounced 4f
hybridization indicative of bonding interactions.6

In contrast to “strongly” bound Ln(III) complexes, the
inner coordination sphere of aqueous Ln(III) is known to be
dynamic, with significant exchange of the first- and second-
shell H2O being possible.4 Lanthanides early in the series
are predominantly nine-coordinate (nona-aqua) in solution,
while late lanthanides have a propensity for being eight-
coordinate (octa-aqua). Given the relative “weakness” of the
Ln-OH2 interaction, it is imperative that systematic bench-
marks are performed to elucidate the most appropriate
functionals, basis sets, and electronic structure analysis
methods to be used. Indeed, such benchmarks may help
elucidate patterns in geometric and electronic structure within
the computational chemistry literature of strongly bound Ln
systems. To this end, we have determined and analyzed the
optimal geometric and electronic structures of Ln(H2O)1,8–9

3+

(Ln ) La, Lu), using either local density approximation
(LDA), generalized gradient approximation (GGA), meta-
GGA, or hybrid density functionals in combination with
small- and large-core RECPS and their associated contracted
and uncontracted basis sets. A detailed analysis of the atomic
orbital (AO) coefficients and atomic energies of Ln3+ cations
has revealed specific functions necessary for describing the
Ln AOs. Natural population analyses11 with different par-
titioning of the core/valence/Rydberg natural atomic orbitals
(NAOs) have also been studied, and a modified partitioning
scheme has been proposed for calculating the Ln(III) charges.
This series of molecules has been chosen due to their closed-
shell electronic configurations, which allows for the basis
set, density functionals, and RECPs to be examined in the
absence of any errors associated with first-order spin–orbit
coupling.

Computational Methods

The optimized structures of Ln(H2O)1,8–9
3+ (Ln ) La, Lu) were

obtained using local spin density approximation (LSDA;
SVWN5 and the modern equivalent SPW92),12–16 GGA (PBE,
PW91, and B88P86),17–22 hybrid (B3LYP and PBE0),23–26 and
meta-GGA functionals (TPSS).27 These calculations were
performed in NWChem28 and Gaussian03.29 The former
employed a self-consistent field (SCF) energy convergence
criterion of 10-6, an integral internal screening threshold of
10-16, a numerical integration grid of 10-8, and a tolerance
in Schwarz screening for the Coulomb integrals of 10-12.
Gaussian03 calculations used the Ultrafine integration grid
(99 590 points), and SCF convergence was set to “very-
tight” (10-6). “Verytight” optimization convergence was
not used in all cases due to computational expense. In
test cases, differences in energy between the default and

“verytight” optimization criteria were less than 1.6 mil-
lihartrees. All geometries were confirmed to be local
minima, with no imaginary vibrations unless otherwise
noted. Both small-core Stuttgart-Dresden (SD) RECP30,31

(which includes the n ) 4–6 shells in the valence space)
and large-core SD RECP32 (which includes the n ) 5 and
6 shells in the valence space) were examined with their
associated generally contracted, segmented contracted, and
uncontracted basis sets. The oxygen and hydrogen atoms
were treated with an aug-cc-PVDZ basis set.33 Natural
population11 and Mulliken population34 analyses were
performed at the optimized geometries. All calculations
were performed on the massively parallel Linux cluster
in the Molecular Science Computing Facility in the
William R. Wiley Environmental Molecular Sciences
Laboratory at the Pacific Northwest National Laboratory,
or at the National Energy Research Scientific Computing
Center (NERSC), a DOE Office of Science user facility
at Lawrence Berkely National Laboratory.

Results and Discussion

It is well-known that the lanthanide series exhibits a
pronounced decrease in the ionic radii with increasing
atomic number.35 Filling the 4f orbitals improves shielding
of the nuclear charge and is most pronounced early in the
series. Subsequently, the decrease in ionic radii is larger
at the beginning of the series than at the end. This trend
may be monitored by examining the monotonic decrease
of Ln-X bond lengths (X ) Lewis-base donor), wherein
a quadratic dependence across the series has been
observed. This behavior is observed in X-ray structures
of isostructural Ln complexes36,37 (Ln ) La–Lu), in
addition to more limited sets of solid-state materials38,39

and coordination compounds.40,41 Quadrelli suggested that
individual classes of bond lengths can be fit by a second-
order polynomial.36 More recent studies by Seitz et al.37

have indicated that the ligand field responds to a change
in the average metal ion size to distribute the metal–ligand
bond-length changes; however, taking the average bond
length does show the anticipated contraction. There, it was
pointed out that the quadratic dependence of the lanthanide
contraction can be derived from the model proposed by
Slater42 and later modified by others.43,44 This model
utilizes empirical rules for the shielding of the nuclear
charge Z from electrons in a particular orbital by inner
electron shells, expressed by a screening constant s.

The lanthanide contraction has been calculated by
Pyykko45 and others through the comparison of the difference
of the ionic radii of lanthanum and lutetium, as measured
by bond length Ln-X for isostructural species:

∆Ln ) re(LaX)- re(LuX)

Experimentally and theoretically, the Ln contraction has
been found to be dependent upon the coordination number,
the charge of the ions, and, some have suggested, bond type.
Generally, large contractions are observed for soft bonds and
small contractions are observed for stiffer ones.46 Impor-
tantly, the calculated ∆Ln is often used as a metric for
assessing the reliability and quality of an ab initio calculation.

Dependence of Hydrated Ln(III) Properties J. Chem. Theory Comput., Vol. 4, No. 5, 2008 709



This is problematic, as computationally important errors
within calculations on La and Lu may cancel when deter-
mining the contraction. Here, we use a variety of metrics to
assess the quality of particular method/basis set combinations,
illustrating the potential pitfalls of relying on computed
lanthanide contraction values.

Geometric Dependence Upon RECP and Basis. Small-
Core RECP and Segmented Contracted Basis. Two small-
core RECPs (28 e- in the core) and basis sets are available for
La0 and Lu0 from the Stuttgart group. The first basis set to be
considered is the (14s13p10d8f6g)/[10s8p5d4f3g], which is
based upon a segmented contraction scheme.31 Here, the most
diffuse s function, which has an exponent of 0.02 in La0 and
0.03 in Lu0, has been removed to yield a [9s8p5d4f3g]
contracted Gaussian basis, so as to prevent linear dependence
errors. The performance of the (13s13p10d8f6g)/[9s8p5d4f3g]
basis was first examined by B3LYP optimization of La(H2O)9

3+

and Lu(H2O)8
3+ in the gas phase and subsequent comparison

with available experimental data. As seen in Figure 1, the nona-
aqua La(III) adopts a tricapped trigonal bipyramidal structure,
while the octa-aqua Lu(III) adopts a square antiprismatic
arrangement of the ligating waters. X-ray structures in dilute
LaCl3 solutions observe an average nona-aqua La-OH2 bond
distance of 2.580 Å, while dilute LuCl3 solutions have average
octa-aqua Lu-OH2 distances of 2.338 Å.47,48 This compares
well (within 0.03 Å) with the average calculated B3LYP values
of rLa-OH2 ) 2.618 Å and rLu-OH2 ) 2.369 Å. IR data are also
available for dilute solutions of [Ln(H2O)9–8

3+] (C2H5SO4)3

wherein the Ln-OH2 stretch for La(H2O)9
3+ occurs at 316

cm-1 and, for Lu(H2O)8
3+, at 342 cm-1.49 B3LYP calculates

these stretches to be at 279 and 329 cm-1 (unscaled), respec-
tively (Table 1). These low vibrational frequencies are consistent
with the somewhat too long Ln-OH2 bond lengths.

To examine the lanthanide contraction, ∆Ln, the Ln-OH2

bond lengths for isostructures La(H2O)8
3+ and Lu(H2O)8

3+

were compared (Figure 1 and Table 1). The calculated
lanthanide contraction for these hydrates is 0.215 Å, in
excellent agreement ((0.005 Å) with four-component rela-
tivistic Hartree-Fock (HF; DHF) and MP2 (RMP2) calcula-
tions of Ln(H2O)3+.50 Given previous observations regarding
the sensitivity of the lanthanide contraction to the coordi-
nation number and type of ligands, we sought to directly
compare the DHF and RMP2 values with B3LYP by
calculating the optimized geometries of La(H2O)3+ and

Lu(H2O)3+. Here, the hybrid functional predicts rLa-OH2 )
2.289 Å and rLu-OH2 ) 2.094 Å. This compares to reported
DHF values of 2.34 and 2.13 Å, respectively, and RMP2
values of 2.29 and 2.08 Å, respectively. Thus, there is clearly
excellent agreement between B3LYP (using a RECP basis)
and RMP2 for individual bond lengths, and all three methods
yield lanthanide contraction values that deviate by only 0.01
Å from each other.

The number of valence functions within the contracted
segmented set is quite large, particularly when compared
to the small-core contracted basis sets for An that are
routinely used (12s11p10d8f)/[8s7p5d4f] and truncated to
[6s6p5d3f].51,52 Consequently, the importance of the most
diffuse functions to the total electronic energy, geometry,
IR frequencies, and lanthanide contractions of isostructural
La(H2O)8

3+ and Lu(H2O)8
3+ was examined. The most

diffuse functions from each shell were first systematically
removed and the single-point energies calculated at the
optimized [9s8p5d4f3g] geometries. The energy differ-
ences between the original and truncated bases are
indicative of the contribution of the omitted basis to the
total electronic energy. The geometry was then reopti-
mized using the truncated basis to determine the impor-
tance of the omitted functions to structural parameters and
the frequency of the IR-active totally symmetric Ln-OH2

stretch, νLn-H2O (Table 1).

The first truncated basis omits the three g functions to yield
the [9s8p5d4f] set. The energetic consequence of the g
functions is minor, as the total electronic energy from the
single-point calculation is increased by only 1.6 and 2.4
millihartrees for octa-aqua La(III) and Lu(III), respectively.
The optimization of Ln(H2O)8

3+ with the [9s8p5d4f] basis
yields nearly identical geometries and vibrational frequencies
to those obtained with [9s8p5d4f3g]. Omission of the most
diffuse f function, which has an exponent of 0.1973 for La0,
increases the single-point energy of La(H2O)8

3+ by 3.4
millihartrees, and subsequent geometry optimization implies
minimal impact on the structure and IR spectra. Yet, removal
of the most diffuse f function on Lu3+ (exponent of 0.4244)
increases the single-point electronic energy of Lu(H2O)8

3+

by 108.7 millihartrees in the [9s8p5d3f] basis. Subsequently,
geometry optimization decreases the Lu-OH2 bond length
by 0.05 Å and shifts the frequency of the symmetric stretch,
νLu-OH2, by 30 cm-1 relative to that calculated in the larger
[9s8p5d4f] basis. Truncating the most diffuse p function for
La0 and Lu0 (with a 0.08 exponent), to yield the [9s7p5d43f]
basis, alters the single-point electronic energies by less than
1.6 millihartrees and has negligible structural consequences.
However, removing the second most diffuse p functions with
exponents of 0.2292 and 0.2858 on La0 and Lu0, respectively,
increases the energy by 63.4 and 38.9 millihartrees. The net
affect after geometry optimization in the [9s6p5d3f] basis is
a contraction of rLa-OH2 by 0.06 Å and a 50 cm-1 shift in
νLa-OH2 in La(H2O)8

3+, and a 0.03 Å bond-length shortening
in Lu(H2O)8

3+ with a 30 cm-1 shift in νLu-OH2. Turning to
the s functions, we observe that truncating the most diffuse
s, with exponents of 0.0467 and 0.079 on La0 and Lu0, has
little affect upon the energy (<1.5 millihartree) or geometry;
however, omission of the functions with La0 and Lu0

Figure 1. DFT-optimized tricapped trigonal bipyramidal
La(H2O)9

3+ and square antiprismatic structure of Lu(H2O)8
3+.

Specific geometric parameters are presented in Tables 1
and 2.
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exponents of 0.2539 and 0.4408 increases the energy by up
to 82.9 millihartree. Similar to the above observations,
removal of the second most diffuse s function shortens the
metal–ligand bond lengths by ∼0.04 Å and increases the
energy of the symmetric metal-water vibrational stretch by
∼50 cm-1. Completely unrealistic energies, geometries, and
frequencies are obtained with the [6s6p5d3f] basis.

Despite the dramatic changes that occur in geometry when
using these truncated basis sets, it is quite interesting to note
that the value of lanthanide contraction is relatively constant.
Indeed, ∆Ln varies by only 0.025 Å between the [9s8p5d4f3g]
and [7s6p5d3f] bases, clearly indicating that the lanthanide
contraction is a poor metric for assessing the quality of
geometries of lanthanide complexes. When these structural
and vibrational data are compared as a function of the basis
with available experimental data, the closest agreement for
Lu(H2O)8

3+ occurs with the [9s8p5d3f] and [9s7p5d3f] basis
sets. Since the largest basis set does not yield the closest
geometric parameters relative to experimental results, there
are obvious methodological errors associated with using the
B3LYP functional (Vide infra). However, a second solvation
shell may also improve the agreement with experimental
structures and frequencies, creating more consistency in the
accuracy of the various basis sets. While it might be tempting
to assume that the same truncated basis sets that perform
well for octa-aqua Lu(III) would yield similar quality results
for nona-aqua La(III), geometry optimization of La(H2O)9

3+

with either the [9s8p5d3f] or [9s7p5d3f] basis sets yields
structures that deviate farther from experiment than that
obtained with the [9s8p5d4f] basis (Table 1). As a conse-
quence of the energetic and geometric observations as a
function of the basis, those bases smaller than [9s8p5d4f]
are not recommended for use when studying the solvation
properties of Ln(III).

This brings up the question, however, of why the truncated
basis sets perform so badly. Contraction errors and inflex-
ibility of the basis may be responsible, or perhaps the
truncated functions are genuinely necessary for an accurate
description of the Ln atomic orbitals. Intertwined is the fact
that DFT functionals incorporate some amount of correlation
energy, which may itself lead to deviations in the treatment
of contracted and uncontracted bases, and it is further
possible that the DFT density may be significantly different
from the Hartree-Fock (HF) density for which the basis set
was developed. To explore these issues, the total electronic
energies and AO coefficients of La3+ and Lu3+ cations were
systematically examined using HF, a single SCF cycle of
DFT fixed at the HF density, and SCF-optimized DFT. Both
the segmented contracted and uncontracted bases were
investigated, and we define the difference in energy between
the two bases as the contraction error:

∆Econt )Econtracted -Euncontracted

Table 1. C1 B3LYP Structural Parameters and the Symmetric Ln-OH2 Vibrational Stretching Frequency (cm-1), νLn-OH2,
Obtained for La(H2O)8-9

3+ and Lu(H2O)8
3+ as a Function of General (ano) and Segmented (seg) Contracted Metal Basis

Sets Using Both Small-Core (ECP28MWB) and Large-Core (ECP47MWB for La3+, ECP60MWB for Lu3+) RECPsa

∼symm tol <rM-O> θO1-M-O2 νLn-OH2
b,c E <∆Ln>

La(H2O)9
3+

ECP28MWB
[9s8p5d4f3g] seg C3 0.01 2.618 69.7 279 -1122.987628
[9s8p5d3f] seg C3 0.01 2.620 69.8 280 -1122.981900

La(H2O)8
3+

ECP28MWB
[6s6p5d4f3g] ano S8, C4, C2 0.010 2.580 78.0 293 -1046.505984 0.212
[9s8p5d4f3g] seg S8, C4, C2 0.010 2.580 78.0 293 -1046.507198 0.215
[9s8p5d4f] seg S8, C4, C2 0.010 2.582 78.0 293 -1046.504786 0.213
[9s8p5d3f] seg S8, C4, C2 0.010 2.581 78.0 294 -1046.501456 0.254
[9s7p5d3f] seg S8, C4, C2 0.010 2.581 78.0 294 -1046.501092 0.255
[9s6p5d3f] seg C4, C2 0.001 2.525 76.6 342 -1046.441367 0.223
[8s6p5d3f] seg C4, C2 0.001 2.524 76.6 342 -1046.440913 0.224
[7s6p5d3f] seg C4 0.001 2.506 74.9 358 -1046.417898 0.240
[6s6p5d3f] seg S8, C4, C2 0.010 2.332 69.4 565 -1046.055109 0.275
ECP47MWB
[5s4p3d] S8, C4, C2 0.010 2.603 78.0 288 -642.433080 0.213

Lu(H2O)8
3+

ECP28MWB
[6s6p5d4f3g] ano S8, C4, C2 0.100 2.369 77.9 328 -1847.144368
[9s8p5d4f3g] seg S8, C4, C2 0.100 2.365 77.8 329 -1847.129760
[9s8p5d4f] seg C2 0.010 2.369 77.9 329 -1847.128037
[9s8p5d3f] seg S8, C4, C2 0.010 2.327 78.0 353 -1847.021075
[9s7p5d3f] seg S8, C4, C2 0.010 2.326 78.0 354 -1847.020175
[9s6p5d3f] seg S8, C4, C2 0.010 2.301 77.6 384 -1846.985048
[8s6p5d3f] seg S8, C4, C2 0.010 2.300 77.6 385 -1846.984341
[7s6p5d3f] seg C2 0.001 2.266 75.1 436 -1846.926420
[6s6p5d3f] seg C1 2.057 73.0 629 -846.201021
ECP60MWB
[5s4p3d] S8, C4, C2 0.010 2.390 77.9 322 -650.797635

a Nearest symmetry group (symm), tolerance to reach higher symmetry (tol), average bond lengths (<rM-O> in Å), maximum deviation
from the average bond lengths (∆rM-O

max in Å), bond angles (θO1-M-O2 in deg), total electronic energies (E in hartrees), and average Ln
contraction (<∆Ln> in Å) are presented. b Experimental value ) 316 cm-1, ref 49. c Experimental value ) 342 cm-1, ref 49.
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Using HF, ∆Econt values for the [9s8p5d4f3g] segmented
basis of La3+ and Lu3+ are 0.34 and 4.51 millihartrees,
respectively. B3LYP performed at the HF density with a
single SCF cycle yields contraction errors for La3+ and Lu3+

of 0.24 and 1.16 millihartrees, indicating that the intrinsic
correlation obtained by B3LYP should not affect basis set
performance relative to HF. In contrast, the correlation error
obtained from the SCF-optimized B3LYP energies of La3+

and Lu3+ are 0.66 and 24.0 millihartrees, respectively. This
indicates that, while the B3LYP density for La3+ is quite
similar to that of HF, it is significantly different for Lu3+.
These numerical results are shown pictorially in Figure 2,
along with plots of the uncontracted HF density, FHF, and
the B3LYP difference densities (FHF - FB3LYP) for La3+ and
Lu3+. In the case of La3+, B3LYP and HF both calculate
the same density, and thus (FHF - FB3LYP) is negligible
everywhere (Figure 2a). However, for Lu3+, it is clear that
the B3LYP density deviates significantly relative to that
obtained by HF (Figure 2b). Thus, the large contraction error
obtained from the B3LYP calculation on Lu3+ (Figure 2,
right-hand panel) arises from the fact that the DFT density
using the contracted basis is very similar to that of HF, while
uncontracting the basis leads to a different density and energy
(Figure 2b).

Comparison of the HF and B3LYP SCF AO coefficients
for Lu3+ indicates that, in general, the more diffuse basis
functions have larger contributions to the occupied AOs in
B3LYP than in HF, which leads to the density difference
shown in Figure 2b. Monitoring the HF and B3LYP energies
for Lu3+ with the uncontracted segmented basis as a function

of truncation level reveals significant changes when specific
functions are removed from the basis, indicating that HF
calculations will experience the same basis set dependence
as B3LYP. The energetically crucial functions are the 10th
to 12th s, having exponents of 0.4408, 1.0287, and 2.6778,
respectively, and the 12th p in the (13s13p10d8f6g), which
has an exponent of 0.2858. This is the same behavior
observed in Lu(H2O)8

3+, illustrating that these functions are
crucial for the correct description of the atomic orbitals of
Lu(III). The HF and B3LYP SCF AO coefficients show that
these functions help describe the 4s, 5s, and 5p AOs within
the [Ar]4s23d104p65s24d105p64f14 electronic configuration of
Lu3+, where the [Ar]3d10 electrons are in-core. Interestingly,
the most diffuse uncontracted f function (with an exponent
of 0.4244) has a significant energetic consequence, yet it
participates only in the unoccupied f atomic orbitals. The
importance of diffuse functions is not necessarily surprising,
as such functions are likely needed to describe its filled 4f
shell. Monitoring the total HF and B3LYP electronic energies
for La3+ ([Ar]4s23d104p65s24d105p6 electronic configuration)
using the uncontracted basis as a function of truncation
reveals significant changes to both the HF and B3LYP
energies when the p function with an exponent of 0.2292 is
removed (the ninth p in the (13s13p10d8f6g) set), and
similarly when the s functions with 0.5672 and 0.2539
exponents are removed (the 11th and 12th s functions in the
(13s13p10d8f6g) set, respectively). The SCF basis function
coefficients indicate that the 11th s function contributes to
the 4s and 5s AOs, while the 12th s function has large
coefficients for the 5s AO, and the ninth p function
contributes to the 4p and 5p AOs. On the basis of these
results, it is clear that truncating the Stuttgart small-core basis
set amounts to removing key functions necessary to describe
the Ln atomic orbitals.

Small-Core RECP and General Contracted Basis. The
second basis set to be considered is the (14s13p10d8f6g)/
[6s6p5d4f3g] atomic natural orbital basis set, which is based
upon a generalized contraction scheme.29 These geometries
(Table 1) are found to be nearly identical to those obtained
by the segmented [9s8p5d4f3g]. The agreement between the
two bases is slightly better in La(H2O)8

3+ (rLa-OH2 deviations
of 0.0001 Å) than in Lu(H2O)8

3+ (rLu-OH2 deviations of 0.003
Å). This result is not entirely unanticipated, as the B3LYP
La3+ and Lu3+ cation densities are nearly identical using
either the uncontracted segmented or generalized contracted
natural orbital basis.

Large-Core RECP and Basis. Previous calculations9

utilizing large-core RECPs for Ln have noted that placement
of the f electrons and orbitals in the core leads to qualitatively
similar structural parameters, but with increased bond lengths.
This is presumably due to poorer treatment of core-valence
correlation relative to the small-core RECPs. The large-core
Stuttgart RECP for La3+ places the [Kr]4d10 electrons in
the core, leaving 5s25p6 in the valence space. Geometry
optimization of La(H2O)8

3+ yields a square antiprismatic
structure near S8 symmetry, similar to those found using the
two small-core RECPs. The average La-OH2 bond length
is 2.603 Å, which is 0.023 Å longer than the small-core bond
lengths using the (13s13p10d8f6g)/[9s8p5d4f3g] segmented

Table 2. Structural Parameters and the Symmetric
Ln-OH2 Vibrational Stretching Frequency (cm-1), νLn-OH2,
of Ln(H2O)8–9

3+ (Ln ) La, Lu) Obtained with LDA, GGA,
and meta-GGA Functionals Using the Small-Core RECP
and the [9s8p5d4f3g] Segmented Basisa

method ∼symm tol <rM-O> θO1-M-O2 νLn-OH2 <∆Ln>

La(H2O)9
3+

TPSS C3 0.01 2.600 69.8 280
B3LYP C3 0.01 2.618 69.7 279

La(H2O)8
3+

SVWN5 S8, C4, C2 0.010 2.496 78.0 326 0.213
SPW92b C2 0.001 2.496 78.0 321 0.213
PW91 S8, C4, C2 0.010 2.564 77.9 294 0.208
B88P86 S8, C4, C2 0.010 2.569 78.0 291 0.209
PBE S8, C4, C2 0.010 2.569 78.0 292 0.207
TPSS S8, C4, C2 0.010 2.565 78.0 294 0.214
B3LYP S8, C4, C2 0.010 2.580 78.0 293 0.215
PBE0 S8, C4, C2 0.010 2.556 77.8 300 0.191

Lu(H2O)8
3+

SVWN5 C2 0.010 2.283 77.5 368
SPW92 C4, C2 0.010 2.283 77.7 351
PW91 S8, C4, C2 0.010 2.356 77.8 328
B88P86 S8, C4, C2 0.010 2.360 77.9 325
PBE S8, C4, C2 0.010 2.361 77.8 325
TPSS S8, C4, C2 0.010 2.351 77.6 327
B3LYP S8, C4, C2 0.100 2.365 77.8 329
PBE0 S8, C4, C2 0.100 2.365 77.8 322

a Nearest symmetry group (symm), tolerance to reach higher
symmetry (tol), average bond lengths (<rM-O> in Å), maximum
deviation from the average bond lengths (∆rM-O

max in Å), bond
angles (θO1-M-O2 in deg), total electronic energies (Hartree), and
average Ln contraction (<∆Ln> in Å) are presented. b Optimized
structure had a single imaginary vibration at -33 cm-1.
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and (14s13p10d8f6g)/[6s6p5d4f3g] general contracted basis
sets, respectively. The total number of H bonds present in
La(H2O)8

3+ is the same in all three cases; however, the large-
core basis also increases the average H-bond length from
∼2.958 Å in the small-core calculations to 2.986 Å. Similar
results are obtained for Lu(H2O)8

3+, wherein the Lu-OH2

bond length increases by 0.025 Å and the average H-bond
length for the 16 hydrogen bonds increases by 0.032 Å
relative to the small-core (13s13p10d8f6g)/[9s8p5d4f3g]
segmented calculation. This is important, as it indicates that
the large-core RECP affects not only the immediate Ln-X
bond length but also structural features that extend beyond
the metal’s nearest bonding interactions. Interestingly, the
perturbations in hydrogen bonding as a function of RECP
are not attributable to differences in the electrostatic interac-
tions, as both Mulliken34 and NPA11 charges are virtually
unchanged (Vide infra).

Geometric Dependence Upon Density Functionals. The
Jacob’s ladder of density functionals53 describes the relative
increase in the ability of approximate exchange and correla-
tion functionals, EXC’s, to approach the density given by the
exact many-body wave function. Depending on the level of
covalency within the metal–ligand bond, LDA, GGA, meta-
GGA, and hybrid functionals can give quite different
electronic and geometric descriptions for f-element com-
plexes.54 Using LDA with spin–orbit corrections on lan-
thanide atoms has been shown to yield ionization potentials
close to experimental values,55 yet the electronic description
becomes less accurate in molecular calculations, and overbind-
ing is often predicted.56,57A variety of GGA functionals
(BLYP, BP, BPW, and PWPW) have been successful in
describing LnX3 compounds (X ) F, Cl, Br, I; Ln ) La,
Gd, Lu),55 utilizing the RECPs and basis sets of Cundari
and Stevens.58,59 Some studies have shown that hybrid
functionals predict significantly longer bond lengths than
GGA functionals,54 yet B3LYP is often the functional of
choice within computational lanthanide chemistry, and

very successful studies have been performed.9 In order
to assess the applicability of different approximate
exchange correlation functionals to describe hydrated
Ln(III), we have examined the geometries and lantha-
nide contraction values of isostructural La(H2O)8

3+ and
Lu(H2O)8

3+ using LSDA, GGA, meta-GGA, and hybrid
functionals with the small-core RECP and the [9s8p5d4f3g]
segmented basis (Table 2).

In general, each density functional predicts similar square
antiprismatic geometries for Ln(H2O)8

3+. Most have a high
degree of symmetry and are near S8, though Lu(H2O)8

3+ is
typically less symmetric than La(H2O)8

3+. For the sake of
comparison to experimental data, the functional performance
for Lu(H2O)8

3+ will first be discussed. Recall that, experi-
mentally, rLu-OH2 ) 2.338 Å and νLu-OH2 ) 342 cm-1. Given
prior observations of overbinding in LDA,56,57 it is not
surprising that LSDA predicts the shortest metal–ligand bond
lengths, rLu-OH2 ) 2.283 Å. Interestingly, its calculated
frequency for the symmetric metal–ligand stretch shifts by
17 cm-1, depending upon the functional, with SPW92
predicting the closest value, νLn-OH2 ) 351 cm-1, relative
to experimental results. Within the GGA functionals, PW91
yields metal–ligand bond lengths that are ∼0.04 Å shorter
than those of B88P86 and PBE; yet, each GGA predicts very
close νLn-OH2 values (νLn-OH2 ) 325-328 cm-1). The meta-
GGA TPSS functional agrees most closely with the experi-
mental average Lu-OH2 distance (within 0.013 Å); however,
its calculated frequency for the symmetric metal–ligand
stretch is comparable to the GGA and hybrid functionals,
all of which predict too low of a value by ∼20 cm-1. The
hybrid B3LYP and PBE0 functionals predict the longest
rLu-OH2 values, overestimating the distance by 0.03 Å.

Additionally, some of the trends in structure for
Lu(H2O)8

3+ do not hold for the octa-aqua La(III) complex.
For example, there is a 0.02 Å deviation in the La-OH2

bond length between the B3LYP and PBE0 hybrid func-
tionals in La(H2O)8

3+, while the calculated Lu-OH2 bond

Figure 2. Left-hand panel: the difference density between HF and B3LYP (FHF - FB3LYP) for (a) La3+ and (b) Lu3+ using the
uncontracted small-core [9s8p5d4f3g] basis [scale of the density difference: –6.79 × 10-2 (blue), 7.23 × 10-2 (red)]. Right-
hand panel: the total electronic energies of La3+ (red) and Lu3+ (blue) with HF, B3LYP fixed at the HF density, and fully SCF-
optimized B3LYP using the small-core [9s8p5d4f3g] contracted (c) and uncontracted (u) basis sets.
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lengths for the same functionals are essentially identical.
Indeed, the hybrid PBE0 functional yields a metal–ligand
bond length for La(H2O)8

3+ that is much closer to that
predicted by TPSS than that by B3LYP. Examining the
isostructural octa-aqua species allows for investigation of the
functional dependence of the calculated lanthanide contrac-
tion values. LSDA, TPSS, and B3LYP predict essentially
the same ∆Ln of 0.21 Å, while the GGA and PBE0
functionals predict somewhat shorter values. This again
highlights the misleading nature of the lanthanide contraction
as a metric for assessing the appropriateness of a given
method, as techniques with nearly identical ∆Ln values may
have quite different individual metal–ligand bond lengths
that may or may not agree well with experimental values.
Given the good performance of the TPSS functional for
Lu(H2O)8

3+, the structure of nona-aqua La(III) was optimized
and those results compared to experimental ones (Table 2).
Indeed, TPSS does yield slightly better agreement with the
X-ray average rLa-OH2 than B3LYP (by 0.01 Å), yet it has
essentially the same predicted frequency for the totally
symmetric La-water stretch, which is nearly 40 cm-1 below
the reported value.49 It thus appears that no functional
performs equally well for calculated bond lengths as for IR
frequencies in the hydrated species with a single solvent shell.
Some improvement may be expected upon increasing the
basis set on the water ligands, or by adding a second
solvation shell. Another experimental observable of interest
to be compared is the free energy of hydration for Ln(III).
That topic is beyond the scope of this paper, as it is also
highly dependent upon the solvation models used; however,
it is the topic of another manuscript.60

Population Analyses. Population analyses are a common
way to characterize the electronic structure of metal atoms.
Often, the large basis sets needed to describe d- and f-block
metals makes standard Mulliken34 and Löwdin61 methods
nonoptimal. Natural population analysis11 (NPA) has emerged
as one of the methods of choice for such systems because
its partitioning of the orbital space decreases basis set
dependence. NPA divides the molecular charge into atomic
components in analogy to Löwdin’s method,61 where an
occupancy-weighted symmetric (Löwdin) transformation is
used to select an AO and partition it to a set of orbitals
labeled “core,” “valence”, and “Rydberg,” each of which
contributes differently to the density. Core orbitals contribute
exactly 2e to the atomic population, while the valence orbitals
vary in their contributions and the Rydberg set participates
minimally in the charges. In previous studies, our and other
groups have highlighted the sensitivity of NPA charges to
the initial partitioning of the NAO basis into valence and
Rydberg sets. This is particularly true with regard to metals,
where in the d block the default NPA partitioning of the
NAOs excludes the formally empty set of p orbitals from
the valence space of the metal atom. Including the 4p AO
in the Rydberg set can lead to a larger positive charge on
the metal than if it is considered part of the valence space,
owing to the interaction between the empty p and the ligand
orbitals.62 The correct partitioning of the NAOs also influ-
ences predicted trends in atomic charges within a series. In
our studies of 5f actinide complexes, we noted that the empty

set of 6d orbitals (which may contribute to the bonding of
the actinyls) is placed in the Rydberg basis and not in the
valence. Altering the default partitioning scheme to have the
7s5f6d in the valence successfully reproduced trends in
electron-donating capability within the equatorial ligands
bound to UO2

2+.63

In a similar vein, we have examined the appropriate NAOs
to be placed in the valence space of trivalent La and Lu as
well as the dependence of NPA charges upon the functional
and basis set. This is particularly important as NPA has been
extensively used to understand a variety of electronic effects
including the influence of higher coordination numbers upon
energetics of Ln(III) reactions and electronic structure.9,64,65

The default partitioning for La(III) in La(H2O)8
3+ places the

4s and 5s, 4p and 5p, and 4d NAOs in the core; the 6s and
the 4f in the valence; and the 7–10s, 6–10p, and 5f and 6f
in the Rydberg space. To test the calculated metal charge as
a function of the valence/Rydberg NAO partition, all valence
NAOs were first placed in the Rydberg set and then
systematically brought into the valence space (Table 3). In
the case of zero NAOs participating in the valence set, the
atomic charge on La(III) is quite near the formal charge of
3+ (qLa ) 2.846). Inclusion of the 6s NAO in the valence
space decreases the charge by 0.08e, and bringing in the 4f
NAO adds another 0.07e to La(III). Thus, the charge on
La(III) using the default NPA partitioning is 2.695. Similar
contributions to the atomic charge are found with the 6p
orbital in the valence; however, the largest effect is by far
observed when the 5d NAO is allowed to participate in the
valence. The 5d leads to an amazing 0.51e decrease in metal
charge, clearly indicating its importance in the La(III)
electronic structure. This result is not entirely unanticipated,
as previous studies have noted the potential importance of
the 5d orbitals, particularly as their energies are quite
sensitive to the degree of relativistic effects.6 Adding
functions beyond the 6s6p5d4f has no substantial effect upon
qLa, leading us to propose that these NAOs are the appropriate
valence orbitals to calculate La(III) charges. This partitioning
should also be appropriate for other Ln(III) cations, as going
across the period constitutes filling the 4f shell.

Table 3. NPA Charges as a Function of Valence/Rydberg
Partition of the NAO Basisa for La(H2O)8

3+ and Lu(H2O)8
3+

Using the Small-Core RECP and B3LYP/[9s8p5d4f3g]/
aug-cc-pvdz

Valence/Rydberg partition qLn

La(H2O)8
3+

0/6–10s; 6–10p; 5–8d; 4–6f 2.846
6s/7–10s; 6–10p;5–8d; 4–6f 2.768
6s; 4f/7–10s; 6–10p; 5–8d; 5–6f 2.695
6s; 6p/7–10s; 7–10p; 5–8d; 4–f 2.542
6s; 6p; 5d/7–10s; 7–10p; 6–8d; 4–6f 2.032
6s; 6p; 5d; 4f/7–10s; 7–10p; 6–8d; 5–6f 1.948

Lu(H2O)8
3+

0/6–11s; 6–10p; 5–8d; 5–7f 2.848
6s/7–11s; 6–10p; 5–8d; 5–7f 2.681
6s; 6p/7–11s; 7–10p; 5–8d; 5–7f 2.350
6s;5d/7–11s;7–10p;6–8d;5-7f 2.191
6s; 6p; 5d/7–11s; 7–10p; 6–8d; 5–7f 1.857

a The core NAOs of La(III) are the 4–5s; 4–5p; 4d and for Lu(III)
are 4–5s; 4–5p; 4d; 4f. Default partitioning schemes are in bold.
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In the case of Lu(H2O)8
3+, the default NPA partitioning

places the 6s and 5d NAOs in the valence space, with the 4f
in the core owing to the 4f14 electronic configuration. Similar
results to those of La(H2O)8

3+ are obtained when the valence/
Rydberg partitioning is modified; however, the relative
contributions of the NAOs are somewhat altered (Table 3).
As in La(H2O)8

3+, the metal charge is close to the formal
charge of 3+ when all valence orbitals are placed in the
Rydberg set. However, inclusion of the 6s in the valence
partition decreases the atomic charge by 0.16e, nearly dou-
ble that observed in La, and the 6p adds an additional 0.33e.
The 5d adds 0.49e, which is slightly less than that found in
La(H2O)8

3+. Including the 4f NAO in the valence space does
not change qLu significantly, as it is doubly occupied and
contributes exactly 2e when it is in the core space. The
enhanced 6s and 6p contributions and decreased 5d partici-
pation in Lu(III) are in agreement with all electron DFT
calculations of La(H2O)8,9

3+ and Lu(H2O)8,9
3+ using a zeroth-

order regular approximation Hamiltonian, which indicates
that the 5d orbitals are destabilized and the 6s orbitals are
stabilized by increasing relativistic effects.6 Since relativity
plays an increasingly important role as one goes across the
Ln period, the 6s orbital is more active in the metal-water
interaction of Lu(H2O)8

3+ than in La(H2O)8
3+. However,

the importance of the 6s is only manifested in the NPA
and not within natural bond order analysis (NBO). Indeed,
NBO predicts no covalent interaction between the Ln and
ligating waters, irrespective of the partitioning of the
valence space.

Using both the modified NPA and default partitioning
schemes, the dependence of the metal charge upon basis set
and density functional has also been examined. Table 4
shows the calculated charges on the metal center in
La(H2O)8

3+ and Lu(H2O)8
3+ with different functionals at

their respective optimized geometries. Both the modified and
default NPA schemes predict that the metal charges increase
as LSDA < GGA < meta-GGA < hybrid and that these
charges span ∼0.3e. Yet, the two partitions differ signifi-
cantly when comparing qLa and qLu. Specifically, the default
NPA charges predict that La(III) has nearly 0.5e less than
Lu(III) in Ln(H2O)8

3+, while the modified NPA charges are
within 0.1e for the two metals. This is an important
observation if one is interested in calculating the relative
surface charge density, Fs, of La(III) and Lu(III), as the

default partition would significantly overemphasize the
electrostatic differences across the Ln period.

A comparison of the NPA charges as a function of basis
set yields several important observations (Table 5). First,
choice of the large-core or small-core RECP has little effect
upon the calculated metal charge. Second, the calculated
charges as a function of basis set truncation level qualitatively
reflects the importance of key functions in the basis. For
example, the g functions have neither energetic nor electro-
static importance, and truncation to the [6s6p5d3f] level
yields completely unrealistic energies and charges for
Ln(H2O)8

3+. In between these two extremes, NPA predicts
roughly the same contributions of each function to the
electrostatic description.

Conclusions

Benchmark calculations on Ln(H2O)1,8–9
3+ (Ln ) La, Lu)

have examined changes in predicted geometric and electronic
structure using different density functionals and basis sets.
Using the small-core RECP, we have highlighted specific
functions for La0 and Lu0 that must be included in the basis
for an adequate description of the Ln AOs. Using the
(13s13p10d8f6g) uncontracted basis for La3+, these are the
11th and 12th s functions and the ninth p function, while
for Lu3+ the 10th through 12th s functions, the 12th p
function, and the most diffuse f function are important.
Differences in the calculated La3+ and Lu3+ HF and B3LYP
cation densities have been identified as the source of a
significant B3LYP contraction error in Lu3+. As previously
reported, large-core RECP calculations predict longer
Ln-ligand bond lengths relative to small-core calculations.
However, we have also shown that deviations in structural
parameters extend beyond the Ln-ligand bonds and alter
the H-bond distances in the primary hydration shell. In
accordance with previous studies, we observe overbinding
when using the LSDA functionals. The meta-GGA TPSS
functional has the closest structural agreement of its opti-
mized geometries relative to experimental results; however,
the performance of the common B3LYP functional is also
reasonable. Interestingly, LSDA, TPSS, and B3LYP calculate
nearly identical lanthanide contraction values, while GGA,
PBE, and PB0 have shorter values. In combination with our

Table 4. NPA Charges (q) Obtained with Different Density
Functionals (at the Respective Optimized Geometries)
Using Both the Modified (6s6p5d4f) and Default (6s4f for
La(III) 6s5d for LuIII)) Valence Partition of the Small-Core
RECP and the Segmented Contracted [9s8p5d4f3g] Basis

modified valence default valence

qLa qLu qLa qLu

SVWN5 1.624 1.586 2.559 1.971
SPW92 1.623 1.586 2.558 1.971
PW91 1.821 1.766 2.622 2.107
PBE 1.863 1.771 2.650 2.111
TPSS 1.867 1.793 2.643 2.129
B3LYP 1.948 1.857 2.695 2.191
PBE0 1.925 1.867 2.689 2.205

Table 5. B3LYP NPA Charges (q) Using the Modified
(6s6p5d4f) Valence Partition as a Function of Segmented
Contracted Basis Set Using the Small-Core (ECP28MWB)
RECP at the Optimized [9s8p5d4f3g] Geometry of
Ln(H2O)8

3+ and Using the Large-Core (ECP47MWB in La
and ECP60MWB in Lu) RECP at the Optimized Geometry

qLa qLu

ECP28MWB
[9s8p5d4f3g] 1.948 1.857
[9s8p5d3f] 2.035 1.900
[9s7p5d3f] 2.240 2.190
[9s6p5d3f] 2.442 2.315
[8s6p5d3f] 2.518 2.480
[7s6p5d3f] 2.573 2.552
[6s6p5d3f] 3.561 3.590

ECP47MWB ECP60MWB
[5s4p3d] 2.049 1.804
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basis set results, this highlights the misleading nature of the
lanthanide contraction as a metric for assessing the quality
of method/basis set combinations. In fact, ∆Ln is remarkably
insensitive to clear inadequacies of a basis due to cancellation
of errors. Finally, we have examined the calculated charges
from natural population analyses and proposed that the
6s6p5d4f NAOs be placed in the valence space when
determining atomic charge. Clear deviations in the elec-
trostatic description are observed when the NPA charges
from the modified and default partitioning schemes are
compared.
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Abstract: The previously proposed polarization consistent basis sets, optimized for density
functional calculations, are evaluated for calculating nuclear magnetic shielding constants. It is
shown that the basis set convergence can be improved by adding a single p-type function with
a large exponent and allowing for a slight decontraction of the p functions. The resulting pcS-n
basis sets should be suitable for calculating nuclear magnetic shielding constants with density
functional methods and are shown to perform significantly better than existing alternatives for
a comparable computational cost.

I. Introduction

The use of nuclear magnetic resonance methods for probing
molecular structures in solution-phase environments is well
established, and technical and methodology improvements
continue to push the limits for the size of molecules that
can be handled. An increasingly important element for
interpreting the experimental data is the simultaneous
calculation of spectral information, which allows a direct
correlation between molecular structure and quantities such
as nuclear magnetic shielding and spin-spin coupling
constants.1 In order for this to become a routine procedure,
it is necessary that there exist computational procedures that
both are fast and have well-defined accuracies. While
sophisticated methods such as coupled cluster can provide
very accurate results, they are limited to relatively small
systems.2 Density functional methods,3 on the other hand,
are applicable to systems with hundreds or even thousands
of atoms.4 The main drawback of density functional methods
is the inability to systematically improve the results, but Keal
and Tozer have recently proposed new exchange-correlation
functionals aimed at calculating nuclear magnetic shielding
constants.5

The second component in performing electronic structure
calculations is the use of a basis set for expanding the
molecular orbitals. A large basis set will enable the full
potential of the chosen method for calculating the wave
function to be realized but also requires a large computational
cost. A small basis set, on the other hand, is computationally
efficient but introduces errors in the results. It is therefore

desirable to have a sequence of basis sets such that the
accuracy can be controlled and assessed at each level, and
at the same time being as compact as possible. For wave
function based methods including electron correlation, the
correlation consistent (cc-pVXZ)6 basis sets developed by
Dunning and co-workers represent such a hierarchy for
energies and structural properties. For independent particle
models, such as density functional theory, we have developed
the polarization consistent (pc-n)7 basis sets for providing a
fast and controlled convergence toward the basis set limit.

In discussions of basis set convergence, it is important to
realize that different methods and properties have different
basis set requirements and convergence rates. Both the cc-
pVXZ and pc-n basis sets have been constructed using
energetic criteria, such that functions which contribute similar
amounts of energy are included at the same stage, and this
leads to the maximum angular momentum function included
in the basis set as the natural expansion parameter. The
differences between the cc-pVXZ and pc-n basis sets are
related to the fact that the electron correlation energy
converges as an inverse polynomial in the maximum angular
momentum function,8 while the density functional energy
displays an exponential convergence.9 By virtue of construc-
tion, the cc-pVXZ and pc-n basis sets are therefore expected
to provide the fastest convergence toward the limiting value
for correlation and density functional energies, respectively.
Energetically related properties, such as equilibrium geom-
etries and vibrational frequencies, usually also display a
smooth convergence toward the basis set limit.10
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For molecular properties that depend on the energetically
unimportant region far from the nuclei, such as electric
multipole moments and polarizabilities, the basis set con-
vergence can be substantially improved by adding diffuse
functions, leading to the aug-cc-pVXZ11 and aug-pc-n12 basis
sets. In recent work we have shown how the basis set
convergence for calculating nuclear spin-spin coupling
constants can be improved by adding tight functions, leading
to the definition of the pcJ-n basis sets.13 The spin-spin
coupling constant has four independent contributions, and
an interesting observation was that the different operators
have different basis set requirements. The Fermi-contact
operator is only sensitive to the presence of (tight) s-type
functions and the paramagnetic spin-orbit (PSO) operator
is only sensitive to the presence of p-type functions, while
the spin-dipole operator is sensitive to p-, d-, and f-type
functions. In order to ensure a fast basis set convergence of
the spin-spin coupling constant, it was therefore necessary
to add tight s-, p-, d-, and f-type basis functions.

The nuclear magnetic shielding constant σ can be defined
as the second derivative of the energy with respect to an
external magnetic field B and a nuclear magnetic moment I.
In a perturbation formulation, the shielding constant can be
written in terms of a diamagnetic and paramagnetic contribu-
tion, where the former is calculated as an expectation value
of the diamagnetic shielding operator (HDS) while the latter
is calculated as a response property of the paramagnetic
spin-orbit (HPSO) and orbital Zeeman (LG) operators.14,15

σ ) ∂
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∂B ∂ I

) 〈Ψ0|H
DS|Ψ0〉 - 2∑

n*0
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riA
3

LG )
1
2

riG × pi (1)

Here riA/G denoted the position vector between electron i
and nucleus A or the gauge origin G, µN is the nuclear
magneton, and gA is the nuclear g factor. The nuclear
magnetic shielding constant is a 3 × 3 tensor, but only the
average isotropic component corresponding to one-third of
the trace of σ is observed in solution, and we will
consequently focus on this. It is customary to use the units
of ppm, and this will also be the case here.

Given our findings for the basis set requirements of the
PSO operator, it follows that the basis set convergence for
nuclear magnetic shielding constants potentially could be
improved by adding tight p functions. Furthermore, to our
knowledge detailed basis set requirements of the diamagnetic
shielding and orbital Zeeman terms have not been investi-
gated. The present paper examines the basis set convergence
of the nuclear magnetic shielding constant using density
functional methods in more detail.

A large body of previous work on calculating nuclear
magnetic shielding constants exists, with the majority
employing standard basis sets, such as the Pople style k-lmG
basis sets,16 the Ahlrichs basis sets of double, triple, and
quadruple quality,17 and the cc-pVXZ18 and pc-n19 families
of basis sets. The IGLO basis sets have been proposed
explicitly for magnetic properties,20 and Manninen and Vaara
have proposed to use basis sets complete to within a given
threshold in a given exponent range for calculating magnetic
properties, but only a single basis set suitable for first-row
elements and hydrogen has been defined.21

II. Computational Details

All calculations have been performed with the Dalton22

and Gaussian-0323 program packages using the KT3 and
B3LYP24 exchange-correlation functionals. The GIAO tech-
nique has been employed to ensure gauge independence of
the calculated results.25 Molecular geometries have been
taken from the G3 data set26 or optimized at the B3LYP/6-
31G(d,p) level. We emphasize that only the convergence with
respect to the basis set is investigated in the present case,
and no attempt is made to compare with experimental results.
The latter requires attention to the molecular geometry and
the quality of the exchange-correlation functional as well as
vibrational and environmental effects. It is demonstrated that
the basis set convergence is very similar for the two
employed functionals, and the basis set convergence should
therefore be representative for Hartree-Fock and density
functional methods in general.

III. Improved Basis Sets for Calculating
Nuclear Magnetic Shielding Constants

The notation for the polarization consistent basis sets is pc-
n, where n indicates the level of polarization beyond the
atomic system, i.e. pc-0 is unpolarized, pc-1 is of double-�
quality with a single polarization function, pc-2 is of triple-�
quality with d- and f-type polarization functions, etc. An
initial exploration using the uncontracted pc-n basis sets
showed that only p-type tight functions had any significant
influence on the calculated nuclear magnetic shielding
constants, which is consistent with the findings for the PSO
operator in the previous study. Diffuse functions in some
cases also had a significant effect, which may be related to
the orbital Zeeman operator or simply to the fact that polar
systems with lone pairs in general require diffuse functions
for an adequate description. The diamagnetic shielding
operator was not found to have additional basis set require-
ments beyond those already included for representing the
electron density.

In order to determine the optimum exponents for the tight
p functions, we employed an optimization procedure analo-
gous to that used for defining the pcJ basis sets where the
optimization criterion is to maximize the change in the
nuclear shielding constant relative to the regular pc-n basis
set. The optimum exponents determined for a selection of
molecular systems showed a high degree of regularity with
a near-constant ratio of 6.5 relative to the highest exponent
already included in the basis set. Addition of a second tight
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p function was in all cases found to give almost negligible
changes. These findings are in complete agreement with the
previous study for the PSO operator and suggest that a faster
basis set convergence can be obtained by adding a single
tight p-type function to the regular pc-n basis sets.

The lighter s-block elements (H, He, Li, Be) do not have
occupied p orbitals, and it is therefore not a priori clear
whether the results for these elements will be sensitive to
the presence of tight p functions. In test calculations we found
that the results for these elements are less affected by tight
p functions than for the p-block elements but that a
systematic improvement does occur, and we have therefore
elected to include a tight p function also for these elements.
We thus define a sequence of pc-type basis sets optimized
for calculating nuclear magnetic shielding constants by
adding a single tight p-type function to the regular pc-n basis
sets to produce a basis set denoted pcS-n, where S indicates
shielding. The size of the basis sets are shown in Table 1.

The pc-n basis sets employ a general contraction scheme
using atomic orbital coefficients, where the degree of
contraction is determined by the criterion that the contraction
error should be smaller than the error of the uncontracted
basis set relative to the basis set limit. For the pc-n basis
sets this leads automatically to the pc-1 basis set being of
double-� quality in the valence region, the pc-2 basis set
being of triple-� quality, etc. When this criterion is used for
the pcJ-n basis sets, it allows only a small degree of
contraction, as the nuclear spin-spin coupling constant
requires substantial flexibility in the core region. We have
employed the same strategy in the present case, and it is
found that the nuclear magnetic shielding constant requires
more flexibility in the inner valence region for the p orbitals
than the regular pc-n basis sets, and the recommended
contractions are shown in Table 2. The pcS-0 basis set is of

the same size as the pc-0 basis set, while the pcS-1 and pcS-2
basis sets have one or two more (contracted) p functions.
The pcS-3 basis set requires further decontraction of the p
functions to ensure that the contraction error remains below
the inherent error of the uncontracted basis set. The pcS-4
basis set is sufficiently large that the remaining basis set
errors are only fractions of a ppm, and it is difficult to devise
a contraction scheme without degrading this accuracy. We
have chosen the contraction shown in Table 2, where the s
contraction is relaxed for second-row elements relative to
the pc-4 basis set and the p functions are almost uncontracted.

IV. Basis Set Convergence

We have examined the performance of the pcS-n and aug-
pcS-n families of basis sets, as well as a selection of other
popular basis sets, shown in Tables 1 and 2, for the systems
in Table 3. As there are some differences between the nuclear
magnetic shielding constants, the results will be divided into
five groups: Hydrogen (H), first- (M1 ) Li, Be) and second-
row (M2 ) Na, Mg) metallic elements, and first- (A1 ) C-F)
and second -row (A2 ) Si-Cl) main-group elements. The
basis set limiting value is in each case taken as the
uncontracted aug-pcS-4 value, except for the largest systems
where the pcS-4 results were used. The difference in the
results with the (uncontracted) aug-pcS-3 and aug-pcS-4 basis
sets indicates that the reference values are converged well
below 0.001 ppm for hydrogen and 0.1 ppm for the
remaining elements. A couple of pathological cases where
this is not the case are discussed at the end of this section.

Table 4 shows the (uncontracted) basis set errors relative
to the aug-pcS-4 results quantified in terms of the mean
absolute deviation (MAD) over the symmetry-unique shield-
ing constants using the KT3 and B3LYP exchange-correla-

Table 1. Basis Set Composition in Terms of Uncontracted Functions

basis H Li-Be B-Ne Na-Mg Al-Ar

pc-0 3s 5s1p 5s3p 8s5p 8s6p
pc-1 4s1p 7s3p 7s4p1d 11s7p 11s8p1d
pc-2 6s2p1d 10s4p1d 10s6p2d1f 13s9p1d 13s10p2d1f
pc-3 9s4p2d1f 14s6p2d1f 14s9p4d2f1g 17s12p2d1f 17s13p4d2f1g
pc-4 11s6p3d2f1g 19s8p3d2f1g 18s11p6d3f2g1h 21s15p3d2f1g 21s16p6d3f2g1h
pcS-0 3s 5s2p 5s4p 8s6p 8s7p
pcS-1 4s2p 7s4p 7s5p1d 11s8p 11s9p1d
pcS-2 6s3p1d 10s5p1d 10s7p2d1f 13s10p1d 13s11p2d1f
pcS-3 9s5p2d1f 14s7p2d1f 14s10p4d2f1g 17s13p2d1f 17s14p4d2f1g
pcS-4 11s7p3d2f1g 19s9p3d2f1g 18s12p6d3f2g1h 21s16p3d2f1g 21s17p6d3f2g1h
STO-3G 3s 6s3p 6s3p 9s6p 9s6p
6-31G(d,p) 4s1p 10s4p1d 10s4p1d 16s10p1d 16s10p1d
6-311G(2df,2pd)a 5s2p1d 11s5p2d1f 11s5p2d1f 13s9p2d1f 13s9p2d1f
cc-pVDZ 4s1p 9s4p1d 9s4p1d 12s8p1d 12s8p2d
cc-pVTZ 5s2p1d 11s5p2d1f 10s5p2d1f 15s10p2d1ff 15s9p3d1f
cc-pVQZ 6s3p2d1f 12s6p3d2f1g 12s6p3d2f1g 16s12p3d2f1gg 16s11p4d2f1g
cc-pV5Z 8s4p3d2f1g 14s8p4d3f2g1hb 14s8p4d3f2g1h 20s14p4d3f2g1hh 20s12p5d3f2g1h
cc-pCVDZ 4s1p 9s4p1d 10s5p1d 13s9p2d 13s9p2d
cc-pCVTZ 5s2p1d 11s5p2d1f 12s7p3d1f 17s12p4d2fi 17s11p4d2f
cc-pCVQZ 6s3p2d1f 12s6p3d2f1g 15s9p5d3f1g 19s15p6d4f2gj 19s14p6d4f2g
SVP 4s1p 7s4pc 7s4p1d 10s6p 10s7p1d
TZV 5s2p1d 11s4pd 11s6p2d1f 14s8p1d 14s9p2d1f
QZV 7s3p2d1f 15s7p2d1fe 15s7p2d1f 20s12p3d1f 20s14p4d2f1g
IGLO-II 5s1p 9s5p1d 11s7p2d
IGLO-III 6s2p 11s7p2d 12s8p3d

a McLean-Chandler basis set30 for Na-Ar. b 7p for Li. c 1p for Li. d 3p for Li. e 6p for Li. f 16s for Na. g 19s for Na. h 19s12p for Na. i 18s
for Na. j 22s for Na.
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tion functionals. It is seen that addition of both diffuse
functions (aug-pc-n) and a tight p function (pcS-n) to the
pc-n basis sets has an effect and, with a few exceptions, leads
to lower basis set errors. It is noticeable that in some cases
there is a cooperative effect, where addition of both tight
and diffuse functions leads to a larger improvement than the
sum of the two individual effects. At the pc-1 level with the
KT3 functional for first-row nonmetallic elements (A1 )
C-F), for example, the addition of diffuse functions
improves the MAD by 2.7 ppm, the addition of a tight p
function lowers the MAD by 10.1 ppm, but the combined
effect is 15.2 ppm. These values should be compared to the
MAD value of 18.0 ppm for the pc-1 basis set, which
consequently is lowered to 2.8 ppm with the aug-pcS-1 basis
set.

The basis set errors are much smaller for hydrogen
shieldings than for the other elements, and the metallic
s-block elements (Li, Be, Na, Mg) have lower errors at a
given level than the p-block elements (C-F, Si-Cl). This
is consistent with the importance of p functions for the PSO
operator and the dominance of s-type bonding for hydrogen
and the metallic elements. The basis set error for the second-

row elements Si-Cl tend to be somewhat larger than for
the first-row elements C-F, and the improvement by adding
diffuse and tight functions is smaller. Table 4 shows that
addition of a single tight p function can improve the basis
set convergence, although the improvement is not as
spectacular as for the spin-spin coupling constants. It can
also be noted that the basis set convergence is very similar
for the two employed exchange-correlation functionals.

Table 5 compares the performance of the (contracted)
pcS-n and aug-pcS-n basis sets with a selection of other
commonly used basis sets for the set of systems in Table 3.
The Pople type STO-3G,27 6-31G(d,p),28 and 6-311G-
(2df,2pd)29,30 basis sets represent minimum and double- and
triple-� quality, and the last two can be augmented with
diffuse functions (6-31++G(d,p) and 6-311++G(2df,2pd)).
The Dunning family of correlation consistent basis sets cc-
pVXZ (X ) D, T, Q, 5)31 can be augmented with both
diffuse (aug-cc-pVXZ)32 and tight functions (cc-pCVXZ).33

The latter has been designed for recovering core and core-
valence correlation and adds tight functions of all types as
well as multiple sets of tight functions for the T and Q basis
sets (Table 2). The Ahlrichs-type basis sets SVP,34 TZP,35

and QZP36 are of double-, triple-, and quadruple-� quality,
but no standard sets of diffuse and tight functions have been
defined. The IGLO basis sets have been designed for
magnetic properties but are not defined for s-block elements.
They are furthermore somewhat difficult to classify in terms
of quality, as the number of s and p functions (Table 2)
indicates at least quadruple-� quality, but the lack of high
angular momentum functions suggests that they are at best
of triple-� quality. A comparison of the results in Table 5
for the KT3 and B3LYP functionals indicates a very similar
basis set behavior, indicating that the conclusions discussed
in the following should be valid for density functional
methods in general.

Table 2. Basis Set Composition in Terms of Contracted Functions

basis H Li-Be B-Ne Na-Mg Al-Ar

pc-0 2s 3s1p 3s2p 4s2p 4s3p
pc-1 2s1p 3s2p 3s2p1d 4s2p 4s3p1d
pc-2 3s2p1d 4s2p1d 4s3p2d1f 5s3p1d 5s4p2d1f
pc-3 5s4p2d1f 6s3p2d1f 6s5p4d2fg1 6s4p2d1f 6s5p4d2f1g
pc-4 7s6p3d2f1g 8s4p3d2f1g 8s7p6d3f2g1h 7s5p3d2f1g 7s6p6d3f2g1h
pcS-0 2s 3s1p 3s2p 4s2p 4s3p
pcS-1 2s1p 3s3p 3s3p1d 4s4p 4s4p1d
pcS-2 3s2p1d 4s3p1d 4s4p2d1f 5s6p1d 5s6p2d1f
pcS-3 5s4p2d1f 6s6p2d1f 6s8p4d2fg1 7s8p2d1f 7s9p4d2f1g
pcS-4 7s6p3d2f1g 8s8p3d2f1g 8s10p6d3f2g1h 10s11p3d2f1g 10s12p6d3f2g1h
STO-3G 1s 2s1p 2s1p 3s2p 3s2p
6-31G(d,p) 2s1p 3s2p1d 3s2p1d 4s3p1d 4s3p1d
6-311G(2df,2pd)a 3s2p1d 4s3p2d1f 4s3p2d1f 6s5p2d1f 6s5p2d1f
cc-pVDZ 2s1p 3s2p1d 3s2p1d 4s3p1d 4s3p2d
cc-pVTZ 3s2p1d 4s3p2d1f 4s3p2d1f 5s4p2d1f 5s4p3d1f
cc-pVQZ 4s3p2d1f 5s4p3d2f1g 5s4p3d2f1g 6s5p3d2f1g 6s5p4d2f1g
cc-pV5Z 5s4p3d2f1g 6s5p4d3f2g1h 6s5p4d3f2g1h 7s6p4d3f2g1h 7s6p5d3f2g1h
cc-pCVDZ 2s1p 4s3p1d 4s3p1d 5s4p2d 5s4p2d
cc-pCVTZ 3s2p1d 6s5p3d1f 6s5p3d1f 7s6p4d2f 7s6p4d2f
cc-pCVQZ 4s3p2d1f 8s7p5d3f1g 8s7p5d3f1g 9s8p6d4f2g 9s8p6d4f2g
SVP 2s1p 3s2pb 3s2p1d 4s2p 4s3p1d
TZV 3s2p1d 5s3pc 5s3p2d1f 5s4p1d 5s4p2d1f
QZV 4s3p2d1f 7s4p2d1fd 7s4p3d2f1g 9s5p4d1fe 9s6p4d2f1g
IGLO-II 3s1p 5s4p1d 7s6p2d
IGLO-III 4s2p 7s6p2d 8s7p3d

a McLean-Chandler basis set30 for Na-Ar. b 1p for Li. c 2p for Li. d 6s for Li. e 3d for Na.

Table 3. Molecular Systems Used for Calibration

CH4, NH3, H2O, HF, N2, F2, CO, CO2, F2O
C2H2, C2H4, C2H6, H2CO, HCOOH, H2CS, N2H2, N2H4

CH3NH2, CH3NO2, CH3OH, CH3F, CH3CN, CH2F2, CH3CHO,
H2CCHCN

CH3SiH3, CH3PH2, CH3SH, CH3Cl, CH2Cl2, C2N2, C2F4, C2Cl4
cyclopropene, butadiene, benzene, furan, pyrrole, thiophene,

pyridine, (CH3)2SO
LiH, LiCH3, Li2O, LiF, Li2S2, LiCl
Be2H4, Be(CH3)2, BeF2, BeCl2
SiH4, PH3, H2S, HCl, Si2H2

P2, Cl2, CS, CS2, CSO, PF5, PCl5, SF6, Cl2SO2

NaH, NaCH3, Na2O, NaF, Na2S, NaCl
Mg2H4, Mg(CH3)2, MgF2, MgCl2
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The results in Table 5 have been grouped according to a
qualitative classification corresponding to subdouble-, dou-
ble-, triple-, quadruple-, and pentuple-� quality, which in
most cases also indicates the highest angular momentum
functions included in the basis sets (Table 2). From a
computational point of view the total number of (contracted)
functions is an important factor, and we have in Table 5
included the average number of basis functions per atom
(Nbasis) over the whole data set in Table 3 as an indicator of
the computational cost. Since addition of both diffuse and
tight functions rapidly increases the size of a basis set, the
highest angular momentum functions included are not
necessarily good indicators of the basis set size. The aug-
cc-pCVTZ basis set, for example, contains more functions
that the cc-pVQZ basis set, despite the latter formally being
of higher � quality.

The unpolarized pcS-0 and aug-pcS-0 basis sets are not
expected to be able to generate useful results, and basis sets
of double-� quality are normally considered as the first level
where semiquantitative results can be expected, with the
6-31G(d,p) basis set being widely used for routine applica-
tions. The performance of the 6-31G(d,p), 6-31++G(d,p),
cc-pVDZ, and aug-pVDZ basis sets are very similar, with
typical deviations of ∼20 and ∼30 ppm for first- and second-
row elements, respectively. Addition of tight functions (aug-
cc-pCVDZ) reduces the errors slightly but deteriorates the
results for hydrogen. The Ahlrichs SVP basis set has
somewhat larger errors. The aug-pcS-1 basis set clearly
outperforms these standard basis sets and reduces the average
error to ∼3 ppm for first-row elements. The results for
second-row elements are also improved to a value of ∼15
ppm. The IGLO-II results formally compare favorably with
the pcS-1 results, but it should be noted that the former results
do not include the metallic systems, where many of the large
deviations are observed. Without these systems, the MAD

value of 8.2 ppm for the A1 systems is reduced to 5.1 ppm,
which can be compared with the IGLO-II value of 8.8 ppm.

At the triple-� level, the standard 6-311G(2df,2pd),
6-311++G(2df,2pd), cc-pVTZ, aug-cc-pVTZ, and Ahlrichs
TZV basis sets perform roughly at par, with typical errors
of ∼0.1 ppm for hydrogen and ∼10 ppm for the nonmetal
atoms. The aug-pcS-2 basis set for comparison has errors of
0.03 ppm for hydrogen and less than 2 and 4 ppm for first-
and second-row elements, respectively. The aug-cc-pCVTZ
basis set improves the aug-cc-pVTZ results, showing that
tight functions are important but also increases the size of
the basis set by nine functions per atom on the average.
Despite having significantly fewer functions, the aug-pcS-2
basis set performs better than the aug-cc-pCVTZ basis set.
The IGLO-III basis set belongs to the triple-� family in terms
of number of functions per atom but displays larger errors
than the aug-pcS-2 basis set, despite the fact that the results
do not include some of the more difficult systems.

The cc-pVQZ, aug-cc-pVQZ, and aug-cc-pCVQZ results
are only marginally improved over those for the correspond-
ing triple-� basis sets, and the Ahlrichs QZV basis set also
only provides a small reduction in the basis set error
compared to the TVZ basis set. In contrast, aug-pcS-3
reduces the basis set error by almost an order of magnitude
relative to aug-pcS-2, and the mean error is now below 0.002
ppm for hydrogen and below 0.5 ppm for all the remaining
elements.

At the pentuple-� level, the cc-pV5Z basis set only
provides a minor improvement relative to the cc-pVQZ
results, and there are still errors of ∼15-20 ppm for the Na
and Mg systems. The pcS-4 basis set, on the other hand,
reduces the basis set errors to below 0.001 ppm for hydrogen
and below ∼0.1 ppm for all the remaining elements.

The grouping in Table 5 displays a significant variation
in the number of basis functions per atom within each quality

Table 4. Mean Absolute Deviations (ppm) Relative to the Basis Set Limit for the Symmetry-Unique Nuclear Magnetic
Shielding Constants for the Systems in Table 3a

KT3 B3LYP

basis set H M1 A1 M2 A2 H M1 A1 M2 A2

pc-0 1.5 14.9 63.5 7.4 81.0 1.5 15.1 64.2 8.8 90.6
aug-pc-0 1.2 12.9 32.8 7.9 54.0 1.1 13.8 30.8 8.6 60.5
pcS-0 1.5 9.3 67.0 6.8 88.9 1.5 8.1 65.0 8.0 99.8
aug-pcS-0 1.1 2.8 12.5 3.5 61.2 1.1 3.0 14.5 3.8 66.7
pc-1 0.38 2.8 18.0 2.7 18.3 0.37 2.8 17.8 2.9 19.7
aug-pc-1 0.25 2.9 15.3 2.5 16.8 0.25 2.9 15.9 2.6 19.3
pcS-1 0.25 1.1 7.9 2.6 19.1 0.24 1.2 7.7 2.8 20.4
aug-pcS-1 0.11 1.0 2.8 1.8 15.4 0.11 1.1 3.3 1.8 17.6
pc-2 0.14 0.94 4.27 0.95 6.65 0.14 0.94 3.92 1.05 7.19
aug-pc-2 0.10 0.87 2.65 1.17 3.96 0.10 0.95 2.83 1.17 3.88
pcS-2 0.073 0.50 2.88 0.75 6.50 0.074 0.45 2.28 0.84 6.92
aug-pcS-2 0.032 0.39 0.61 0.81 3.65 0.034 0.42 0.55 0.79 3.59
pc-3 0.016 0.16 0.49 0.19 0.95 0.017 0.16 0.40 0.19 0.85
aug-pc-3 0.013 0.16 0.25 0.19 0.44 0.014 0.16 0.29 0.18 0.43
pcS-3 0.008 0.07 0.32 0.18 0.96 0.008 0.07 0.23 0.18 0.84
aug-pcS-3 0.005 0.06 0.05 0.16 0.41 0.004 0.07 0.05 0.15 0.39
pc-4 0.001 0.052 0.108 0.023 0.118 0.001 0.048 0.087 0.017 0.110
pcS-4 0.001 0.005 0.059 0.020 0.121 0.000 0.005 0.036 0.013 0.104

a All results have been generated using completely uncontracted basis sets. The basis set limits have been taken as the aug-pcS-4
results. KT3 and B3LYP denote the employed exchange-correlation functionals. H indicates hydrogen shielding constants (75 data points),
M1 indicates Li and Be shielding constants (10 data points), A1 indicates C, N, O, and F shielding constants (92 data points), M2 indicates
Na and Mg shielding constants (10 data points), and A2 indicates Si, P, S, and Cl shielding constants (32 data points).
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level: the aug-cc-pCVQZ basis set, for example, has 10 more
basis functions than the aug-pcS-3 basis set, despite both
being of quadruple-� quality augmented with tight and
diffuse functions. In order to provide an alternative com-
parison, we have displayed the mean average deviation for
all the non-hydrogen shielding constants as a function of the
average number of functions per atom in Figure 1. The pcS-n
and aug-pcS-n families of basis sets clearly display a smooth,
controlled, and exponential convergence toward the limiting
value. The cc-pVXZ and aug-cc-pVXZ basis sets display
little convergence as the basis set is enlarged and have
problems reducing the average error below 10 ppm. Aug-
menting with tight functions (aug-cc-pCVXZ) improves the
results, but at a high computational cost, as many tight
functions are added. It can be noted that the aug-cc-pCVTZ
basis set has a much better performance than the cc-pVQZ
set, despite the two basis sets being of almost the same size.
The Ahlrichs- and Pople-type basis sets perform roughly at
par with the cc-pVXZ basis sets, and augmenting the Pople
basis sets with diffuse functions has only a small influence.
Considering Figure 1, we find it significant that the aug-
pcS-1 basis set, which is only marginally larger in size than

the very popular 6-31++G(d,p), has basis set errors that are
almost an order of magnitude smaller. Similarly, the aug-
pcS-2basisset,whichissimilarinsizetothe6-311++G(2df,2pd)
set, reduces the basis set errors by almost an order of
magnitude.

When the MAD value is displayed as a function of the
average number of functions per atom as in Figure 1, the
convergence of the pcS-n and aug-pcS-n curves is seen to
be very similar, with the aug-pcS-n results for a given n being
of intermediate quality compared to the corresponding pcS-n
and pcS-(n+1) results. When viewed in this fashion, the
effect of augmenting the pcS-n basis sets with diffuse
functions can be considered as simply being the results of
having a more complete basis set. It can also be noted that
the error reduction by including diffuse functions in Table
5 mainly arises from the polar systems in Table 3. For the
nonpolar systems, which include a large fraction of typical
organic molecules, the pcS-n basis sets provide results of
quality similar to that for the aug-pcS-n basis set.

When statistical methods are used for evaluating the
performance of various methods and basis sets, there is
always a risk of biasing the results by the selection of

Table 5. Mean Absolute Deviations (ppm) Relative to the Basis Set Limit for the Symmetry-Unique Nuclear Magnetic
Shielding Constants for the Systems in Table 3a

KT3 B3LYP

basis set 〈Nbasis〉 H M1 A1 M2 A2 H M1 A1 M2 A2

pcS-0 6.4 1.5 10.8 63.9 6.6 92.9 1.5 10.4 63.6 9.9 100.0
aug-pcS-0 9.1 1.1 7.6 14.9 15.3 63.1 1.1 8.4 16.2 24.5 67.0
STO-3G 3.9 2.4 5.0 88.2 19.5 194.1 2.4 5.9 96.9 23.2 224.8

pcS-1 12.1 0.20 1.4 8.2 2.2 19.5 0.21 4.0 8.4 2.6 21.8
aug-pcS-1 18.6 0.08 1.4 3.3 1.3 15.9 0.09 3.2 3.9 2.9 21.0
cc-pVDZ 11.4 0.35 5.6 19.7 20.5 34.1 0.35 8.4 26.1 27.6 58.5
aug-cc-pVDZ 18.2 0.19 4.3 18.6 19.3 29.4 0.19 5.8 24.8 31.7 55.8
aug-cc-pCVDZ 20.7 0.22 3.4 12.8 14.4 18.3 0.20 3.8 17.7 20.7 25.4
6-31G(d,p) 11.3 0.47 5.0 23.8 16.9 30.4 0.43 7.4 29.5 24.1 49.7
6-31++G(d,p) 14.0 0.25 4.1 22.2 19.5 30.6 0.23 6.3 28.6 31.3 49.6
SVP 10.2 0.45 6.5 32.5 13.4 47.6 0.47 8.4 33.0 21.6 73.0
IGLO-II 16.5 (8.8) (13.1) (6.5) (14.0)

pcS-2 25.0 0.07 0.7 3.5 1.0 6.3 0.07 2.2 2.3 2.1 6.8
aug-pcS-2 37.5 0.02 0.7 1.7 0.8 3.3 0.03 0.8 0.9 2.1 4.1
cc-pVTZ 24.4 0.19 2.2 10.5 11.2 20.5 0.19 2.5 9.5 17.9 26.1
aug-cc-pVTZ 37.3 0.10 2.1 10.6 15.7 18.6 0.11 2.1 9.5 13.5 22.1
aug-cc-pCVTZ 46.0 0.11 0.8 3.8 4.7 3.3 0.11 1.0 4.9 4.6 3.8
6-311G(2df,2pd) 24.4 0.20 2.2 10.3 0.8 11.4 0.20 2.2 8.8 1.1 14.6
6-311++G(2df,2pd) 27.1 0.10 2.2 9.4 0.9 5.4 0.11 2.2 7.8 1.6 8.2
TVZ 23.1 0.16 3.5 9.1 5.3 9.2 0.15 3.7 8.2 2.2 14.9
IGLO-III 24.9 (1.4) (12.4) (1.8) (13.5)

pcS-3 54.7 0.004 0.05 0.37 0.22 0.97 0.005 0.05 0.22 0.43 1.02
aug-pcS-3 75.2 0.002 0.04 0.12 0.12 0.45 0.002 0.04 0.06 0.39 0.65
cc-pVQZ 45.5 0.083 0.74 7.31 13.30 26.90 0.082 0.42 4.23 15.43 35.99
aug-cc-pVQZ 66.6 0.051 0.73 6.71 18.12 25.41 0.052 0.41 3.81 5.92 33.41
aug-cc-pCVQZ 85.8 0.046 0.21 1.67 1.97 1.29 0.048 0.22 1.68 1.72 0.52
QVZ 45.9 0.065 1.08 5.92 3.08 3.33 0.066 1.28 3.39 0.79 3.20

pcS-4 92.3 0.001 0.01 0.08 0.03 0.15 0.001 0.02 0.04 0.21 0.13
cc-pV5Z 76.7 0.030 0.30 3.79 19.24 3.62 0.029 0.05 1.20 15.75 2.73

a All results using contracted basis sets. The basis set limit has been taken as the uncontracted aug-pcS-4 results. The cc-pVXZ and
aug-cc-pVXZ basis sets include an additional tight d function for the elements Si-Cl. 〈Nbasis〉 denotes the average number of basis functions
per atom for the whole data set. KT3 and B3LYP denote the employed exchange-correlation functionals. H indicates hydrogen shielding
constants (75 data points), M1 indicates Li and Be shielding constants (10 data points), A1 indicates C, N, O, and F shielding constants (92
data points), M2 indicates Na and Mg shielding constants (10 data points), and A2 indicates Si, P, S, and Cl shielding constants (32 data
points). The IGLO basis sets are not defined for s-group elements, and the values in parentheses are for only 82 (A1) and 26 (A2) data
points.
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compounds in the test set. The systems in Table 3 were
selected to represent a variety of structural elements found
in many applications and covering a range of molecular
bonding. In our initial selection of systems, we also had
included the compounds BeO, BeS, MgO, and MgS. These
systems, however, turned out to display pathological behav-
iors with respect to basis set convergence, and the errors
were so large that they would have completely dominated
the statistical measure in Tables 4 and 5 had they been
included. The worst of these cases is the MgO system, for
which the calculated shielding constants are shown in Table
6. The oxygen shielding constant with the B3LYP functional
is calculated to be -2440 ppm with the (uncontracted) aug-
pcS-4 basis set, and this value is presumably converged to
within ∼10 ppm, as judged from the aug-pcS-3 result. Using
the -2440 ppm value as the reference, it is seen that all the
basis sets of double-� quality have errors measured in the
hundreds or thousands of ppm, and the SVP basis set marks
a spectacular failure with a calculated value of +23 602 ppm.
Part of this discrepancy is due to the fact that this basis set
does not have d-type functions on Mg, but the pcS-1 result
of -6031 ppm shows that this is not the only reason, as
both these basis sets have the same angular momentum
functions (Table 2). Basis sets of triple-� quality have typical
errors of ∼300 ppm, while augmentation with diffuse
functions reduces the error to ∼150 ppm. Only at the
quadruple-� level, preferably augmented with both tight and
diffuse functions, does the error drop to acceptable levels.
For this specific system, inclusion of both d- and f-type
functions on both atoms, as well as diffuse functions, is
required to produce a qualitatively correct description. The
aug-pcS-n basis sets here provide less accurate results than
the aug-cc-pCVXZ basis set at the same � level. This is due

to differences in how the higher angular momentum functions
are included for Mg. The cc-pVXZ basis sets include d
functions for Mg at the DZ level and f functions at the TZ
level, analogous to the case for the p-block elements. The
pcS-n basis sets, in contrast, only include p-type polarization
functions at the DZ level (pcS-1) for s-block elements such
as Mg and only up to d functions at the TZ level (pcS-2). It
is therefore necessary to go to the pcS-3 level to obtain a
qualitatively correct result.

The B3LYP oxygen shielding constant is the most sensi-
tive to the quality of the basis set, but the same trend is seen
for the magnesium atom. The KT3 functional provides
similar trends, although the changes with respect to basis
sets are less dramatic. The calculated shielding constants at
the basis set limit differ by ∼1000 ppm for oxygen and by
∼100 ppm for magnesium between the two functionals,
indicating the importance of selecting a suitable exchange-
correlation functional. While double- or triple-� quality basis
sets will be sufficient for the large majority of routine
applications, it is in our opinion valuable to have a well-
defined hierarchy of basis sets for systematically approaching
the basis set limit for problematic cases, as for example MgO.
It is gratifying to see that both the pcS-n and aug-pcS-n basis
sets display a monotonic convergence toward the limiting
value for this difficult system.

V. Summary

On the basis of our previous analysis for nuclear spin-spin
coupling constants, we show that an improved basis set
convergence for nuclear magnetic shielding constants can
be obtained by addition of a single tight p-type basis function.

Figure 1. Mean absolute deviation relative to the basis set
limit of nuclear magnetic shielding constants (ppm) for all non-
hydrogen atoms as a function of the average number of basis
functions per atom.

Table 6. Nuclear Magnetic Shielding Constants (ppm) for
MgO

KT3 B3LYP

basis set Mg O Mg O

STO-3G 1686 -2727 4674 -13630
6-31G(d,p) 890 -1315 1046 -2966
6-31++G(d,p) 901 -1420 1018 -2610
6-311G(2df,2pd) 915 -1368 1046 -2766
6-311++G(2df,2pd) 918 -1359 1028 -2572
SVP 1990 -8587 -2275 23602
TVZ 915 -1356 1053 -2733
QVZ 908 -1344 1004 -2460
cc-pVDZ 880 -1310 1044 -3090
cc-pVTZ 887 -1372 1018 -2876
cc-pVQZ 892 -1402 996 -2712
cc-pV5Z 914 -1349 999 -2533
aug-cc-pVDZ 898 -1488 1029 -2889
aug-cc-pVTZ 898 -1385 992 -2586
aug-cc-pVQZ 888 -1385 980 -2591
aug-cc-pCVDZ 904 -1456 1026 -2773
aug-cc-pCVTZ 901 -1339 993 -2427
aug-cc-pCVQZ 903 -1335 996 -2424
pcS-0 1308 -3862 7336 -51269
pcS-1 1100 -2567 1484 -6031
pcS-2 921 -1436 1041 -2734
pcS-3 910 -1361 1008 -2477
pcS-4 906 -1338 1002 -2440
aug-pcS-0 916 -1476 1056 -2999
aug-pcS-1 937 -1525 1073 -2944
aug-pcS-2 922 -1439 1033 -2660
aug-pcS-3 909 -1354 1007 -2466
aug-pcS-4 907 -1343 1002 -2440
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When used in combination with the previously proposed
polarization consistent basis sets, this leads to the definition
of a hierarchy of basis sets denoted pcS-n. An evaluation of
the performance for a selection of typical molecular systems
shows that these new basis sets represent an improvement
with respect to reducing basis set errors relative to existing
basis sets. A typical error at the aug-pcS-1 (double-�) level
is 5 ppm for non-hydrogen atoms, which is reduced to 2
ppm upon going to the aug-pcS-2 (triple-�) level. The nuclear
shielding constant for hydrogen displays a much smaller basis
set effect, with typical errors of 0.1 and 0.03 ppm at the
aug-pcS-1 and aug-pcS-2 levels.

Basis set limitations are only one possible error component
in a comparison with experimental values, as the reference
geometry, vibrational averaging, solvent effects,37 and in-
adequacies in the exchange-correlation functional will need
to be addressed in order to provide a direct comparison with
experiments. The present pcS-n basis sets, however, should
be suitable for controlling the basis set error, and the pcS-1
and pcS-2 basis sets should be suitable for Hartree-Fock
and density functional methods in general and allow calcula-
tions for large systems.

The present work adds yet another sequence of basis sets
to an already large variety, and it is reasonable to ask whether
this represents an improvement of the computational capa-
bilities or only serves to further complicate the selection of
a basis set for a given problem. Not surprisingly, we favor
the first option. Modern computational chemistry should in
our opinion be able to control and assess the errors in the
calculated results. An essential component for this is a well-
defined hierarchy of basis sets which approaches the basis
set limiting value in a smooth fashion and preferably is
available for a reasonable selection of elements. Basis sets
such as 6-31G(d,p) do not have a clear protocol for sys-
tematic improvements and must therefore be used as part of
a precalibrated procedure, where the error evaluation is done
by comparison with external reference data. Such an ap-
proach becomes problematic on encountering pathological
cases, as illustrated by the MgO system in the present case,
and for systems where no experimental data are available
for calibration. The availability of a hierarchy of basis sets
allows identification of pathological systems and provides
the possibility of controlling the basis set errors, albeit at an
increased computational cost.

The use of basis sets designed for specific properties has
a long history,38 but the pcJ-n and pcS-n basis sets in our
opinion are the first to allow a systematic and fast conver-
gence toward the basis set limiting value for nuclear magnetic
properties. When property-specific basis sets are discussed,
it should be recognized that basis sets are always a
compromise between accuracy and computational efficiency.
A basis set suitable for calculating a range of properties
accurately will be so large that it is not computationally
efficient. From an application point of view, the interest is
usually in a single or narrow range of molecular properties,
and having computationally efficient basis sets is necessary
for tackling many real-world problems having a large number
of atoms. The present pcS-n basis sets can be considered as
a subset of the pcJ-n basis sets, where it is seen that nuclear

magnetic shielding constants do not need as many tight
functions as spin-spin coupling constants and can be
contracted substantially harder without losing accuracy,
thereby improving the computational efficiency. As such, we
feel that the pcS-n basis sets should be a useful addition to
the field of computational chemistry.
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Abstract: Temperature-dependent conformational population calculations for anti and gauche
forms of 1,2-dichloroethane and 1,2-difluorethane were carried out at a highly correlated level
of theory (MP4(SDTQ) and CCSD(T)) employing good quality basis sets (6-311++G(3df,3pd)
and aug-cc-pVQZ) for the determination of gas relative conformational energies, making use of
the statistical thermodynamics formalism for the evaluation of the thermal energy correction at
the MP2/6-311++G(3df,3pd) and MP2/aug-cc-pVTZ levels. In addition to the standard calculation
of thermodynamic partition functions, a treatment of the lowest-frequency vibrational mode as
hindered rotation and anharmonic correction to vibrational frequencies was also included. We
found a good agreement between ab initio calculated conformational population values and
experimental gas-phase electron diffraction data for the 1,2-dicloroethane. However, for the
1,2-difluorethane species, a reasonable agreement with the experimental anti/gauche population
ratio obtained from the analysis of gas-phase far-infrared (50–370 cm-1) and low-frequency
Raman (70–300 cm-1) spectra was not obtained. The results reported here indicate that, for
1,2-difluorethane, and probably other substituted alkanes where the gauche effect is of relevance,
a more appropriated treatment of the low-frequency modes must be pursued in order to reproduce
experimental conformational population data.

1. Introduction

Conformational analysis is a fascinating subject, first related
to organic chemistry, which has attracted the attention of
experimentalists and theoreticians for a long time, being also
of great importance to almost all areas of chemistry. Over
the past years, temperature-dependent nuclear magnetic

resonance (NMR) and solvent effect studies have been reported
by many researchers in the area of organic chemistry; a recent
example is the conformational analysis of succinic acid.1 In
several cases, the conformational process is not simple, with
some vibrational modes being associated with small rotational
barriers around C-C single bonds. Therefore, the rationalization
of the governing factors operating on nonrigid molecules is still
not completely clear, even for small systems, such as alkane-
substituted molecules.2 The substituted ethane molecules, such
as 1,2-dicloroethane3–5 and 1,2-difluorethane,3,6–8 have been
the subject of a considerable number of investigations
motivated by the interest in its restricted internal rotation.
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In addition, the recent literature for the simple nonsubstituted
ethane molecule also shows that attention has been paid to
the reason for the rotational barrier leading to the experi-
mentally observed staggered structure.9,10 It is well-known
that for 1,2-dichloroethane the anti form predominates over
the gauche conformer. However, the opposite is observed
for 1,2-difluoroethane, where both experimental and theoreti-
cal investigations have shown that this molecule prefers the
gauche conformation, which has been successfully rational-
ized in terms of a hyperconjugation model.11 So, in the case
of the 1,2-difluoroethane molecule, the stability of the gauche
conformation has been attributed to the high electronegative
character of the fluorine atom denominated the gauche effect,
where the equilibrium geometry is a result of charge transfer
from the C-H electron to the C-F* antibonds.12 Investiga-
tion of the far-infrared (50–370 cm-1) and low-frequency
Raman (70–300 cm-1) spectra8 of the gas-phase sample of
1,2-difluoroethane showed that the gauche conformer is 3.39
( 0.54 kJ mol-1 more stable than the anti form, and it has
been one of the most discussed cases of intramolecular
interaction over the past three decades.

Analogously, the gauche preference of 1-fluoropropane12

has also been recognized as of hyperconjugative nature. On
the other side for butane,13,14 the anti preference has been
attributed to steric hindrance or solvent effects. Freitas and
Rittner2 evaluated the conformational behavior of 1,2-di-
substituted ethanes, where the bulky substituents are used,
such as CN and NO2 groups. They have shown that the
electron delocalization contributes very differently to the
conformational equilibrium of the 1,2-di-substituted ethanes.
For example, for 1,2-dinitroethane, the contribution from
electronic delocalization strongly favored the anti conforma-
tion, though antiperiplanar C-H/C-N(O2) hyperconjugative,
analogous to the interaction usually taken as the driving force
of the gauche effect in fluorinated compounds, also showed
a high energy. Although studies with model compounds
search to describe the origin of the gauche effect, there is
no general rule for this effect in the conformational isomer-
ism of 1,2-di-substituted ethanes.2,15

Concomitantly with the interest in the anti/gauche popula-
tion ratio of substituted ethane, the ethane molecule9,16,17,4,10,11

has also been the subject of a considerable number of
investigations addressing restricted internal rotation. The gas-
phase spectroscopic and thermodynamic experimental data
reported for ethane and ethane-substituted molecules provide
useful information to assess the capability of available
theoretical methods used to calculate temperature-dependent
macroscopic properties. The theoretical determination of
thermodynamic properties and, so, gas-phase conformational
population (Gibbs population ratio) is based on the use of
quantum mechanical methods and the standard statistical
thermodynamics formalism,18 where thermodynamic quanti-
ties are calculated through the evaluation of electronic,
translational, rotational, and vibrational molecular partition
functions. The presence of low-frequency modes, which are
not true vibrations, presents a challenge for the evaluation
of the vibrational partition function that so far has no general
solution, and therefore approximated treatments have been
proposed. Various theoretical models have been developed

to account for the internal rotation problem. The most used
recently reported treatments can be found, for example, in
refs 19 and 20.

In order to investigate the performance of theoretical
approaches for predicting relative gas-phase conformational
population values, as compared to observed experimental
data, two distinct points must be considered: the adequacy
of the theoretical model employed, which is reflected in the
pertinence of the mathematical equations developed, and
the quality of the calculated energy values used to feed the
mathematical functions to produce numerical values for the
population ratio, which is dictated by the ab initio level of
theory employed. Regarding the calculation of Gibbs con-
formational population we have, on one hand, the statistical
thermodynamic formalism which makes use of molecular
partition functions based on Boltzmann distributions and also
additional corrections for hindered rotation through the use
of empirical formulas, and on the other hand, the quantum
mechanical methods available for the resolution of the time-
independent Schrödinger equation for an isolated molecule
in the vacuum, which produce the various energy values
(electronic, rotational, and vibrational) and structural data
to feed the thermodynamic partition functions. At this point,
the validity of the theoretical approaches is attested to by
comparison with experimental conformational population
data within experimental uncertainties.

In the light of the importance of the gauche effect in
conformational analysis studies, as mentioned in paragraphs
before, we decided to investigate two experimentally well-
known cases where, in one of them, this effect is of
relevance: 1,2-dichloro- and 1,2-difluorethane. Then, through
comparison with available gas-phase experimental confor-
mational population data, we aim to analyze the performance
of the theoretical approaches commonly used to calculate
conformational population values. In this work, we used the
statistical thermodynamics formulas for the calculation of
thermal energies employing ab initio post-Hartree-Fock
(HF) quantum chemical methods to the calculation of
geometrical parameters and harmonic frequencies required
for the evaluation of rotational and vibrational partition
functions.18 The theoretical model used in this article to
describe the thermal energy corrections also included a
hindered rotation treatment19 of low-frequency modes and
anharmonicity correction21,22 to the vibrational frequencies
for the evaluation of the vibratonal partition function.

2. Computational Methodology

The equilibrium geometry of the two minimum-energy
conformers (anti and gauche) found on the electronic ground-
state potential energy surface (PES) for the 1,2-dicloroethane
and 1,2-difluorethane molecules were fully optimized with
no symmetry constraint or other geometrical restriction at
the second-order Møller-Plesset perturbation theory (MP2)23

using Pople’s split-valence 6-311++G(3df,3pd) basis set24

and Dunning’s correlated consistent basis set (aug-cc-
pVTZ).25 In addition, two first-order transition state (TS)
structures connecting the anti and gauche conformers (named
TS1) and two equivalent gauche forms (named TS2) were
also located on the PES; therefore, energy barriers for

1,2-Difluorethane and 1,2-Dichloroethane J. Chem. Theory Comput., Vol. 4, No. 5, 2008 729



conformational interconversion could be calculated. The
equilibrium structures (and TS) were fully optimized and
vibrational frequencies, and therefore thermodynamic quanti-
ties, calculated at the MP2/6-311++G(3df,3pd) and MP2/
aug-cc-pVTZ levels of theory. In order to obtain a better
description of the electronic correlation effects, single-point
energy calculations, using MP2 fully optimized geometries,
were also carried out at the fourth-order Møller-Plesset
perturbation theory with single, double, triple, and quadruple
excitations (MP4(SDTQ))26 and coupled cluster with single,
double, and perturbative triple excitations (CCSD(T)).27 For
1,2-difluorethane, the G3(MP2) method28 was also employed
for the calculation of relative anti/gauche energies, in order
to evaluate the gauche effect in the light of the G3(MP2)
methodology as compared to the MP4(SDTQ) and CCSD(T)
calculations.

The gas-phase thermal correction (∆GT) to the relative
energy values (∆Eele-nuc) was evaluated with the MP2/6-
311++G(3df,3pd) and MP2/aug-cc-pVTZ structural param-
eters and harmonic vibrational frequencies and, then, used
to obtain the gas-phase Gibbs free energy (∆G) according
to eq 1, where the double slash means that a MP4(SDTQ)
or CCSD(T) single-point energy calculation was performed
using the MP2 fully optimized geometry.

∆G)∆Eele-nuc
MP4(SDTQ)//MP2,CCSD(T)//MP2 +∆GT

MP2 (1)

∆Eele-nuc in eq 1 represents the electronic plus nuclear
repulsion energy contribution, originated from the resolution
of the time-independent Schrödinger equation for an isolated
molecule in the perfect vacuum, and the second term is the
temperature-dependent thermal energy correction, which is
given by eq 2:

∆GT )∆U- T∆S (2)

where ∆U is the internal energy correction to enthalpy which
includes the zero-point energy (ZPE) contribution and T∆S
is the entropic contribution at the absolute temperature T.
The mathematical expression for the terms on the right side
of eq 2 and the respective definition of the electronic,
translational, rotational, and vibrational partition functions
can be found in ref 18. In analogy to eq 1, we can write the
relative enthalpy as

∆H)∆Eele-nuc +∆U (3)

which gives directly ∆G ) ∆H - T∆S, well-known from
classical thermodynamics. The temperature range used was
chosen according to the reported experimental data available
(with p ) 1 atm).

For the evaluation of the vibrational and rotational
contributions to the thermal corrections given by eq 2, the
harmonic oscillator (HO) and rigid rotor (RR) partition
functions were used.18 The anharmonic correction was
evaluated according to the procedure discussed in refs 21
and 22, using a second-order perturbative treatment based
on quadratic, cubic, and semidiagonal quartic force constants,
which consists of retaining the formal expression of the HO
partition function, but the ZPE and vibrational frequencies
(νi) are obtained at the anharmonic level. Therefore, in this
approach, only the vibrational frequencies are corrected for

anharmonicity (the HO vibrational partition function was
used). Explicit equations for anharmonic terms can be found
in refs 21 and 22.

It has been well-known for well over half a century that
a treatment of low-frequency vibrational modes, which are
not true vibrations, as hindered rotations is required to
describe the thermodynamics of ethane and ethane-substituted
molecules. In ref 19, a treatment of low-frequency modes
as internal hindered rotation is described in detail, with a
procedure for the automatic identification of low-frequency
modes as a hindered rotor, requiring no user intervention
(implemented in the Gaussian computer code), being re-
ported. Following early works of Pitzer and Gwinn29

tabulating thermodynamic functions, formulas became avail-
able to interpolate the partition function between those of a
free rotor, hindered rotor, and harmonic oscillators,29–32 with
the approximation by Truhlar31 being used in many studies
in recent years. In ref 19, a modified approximation to the
hindered rotor partition function for the ith low-frequency
mode (named here qi

Hind-Rot) was given, which was used in
this work. As stated in ref 19, this improved partition function
keeps the good characteristics of the previous equation
proposed by Pitzer and Gwinn,29 while enhancing its
behavior for low values of V0/kT (V0 is the barrier height
for internal rotation, k the Boltzmann constant, and T the
absolute temperature). These formulas (see ref 19) are for
one normal vibrational mode involving a single rotating
group with a clearly defined moment of inertia. The thermal
corrections to enthalpy and Gibbs free energy, including
hindered rotation and anharmonic correction to vibrational
frequencies, are calculated according to eqs 4 and 5 below,
at the MP2 level of theory and with good quality basis sets
(6-311++G(3df,3pd) and aug-cc-pVTZ). The terms Hind-
Rot and Anh indicate the use of hindered rotation and
anharmonicity correction to vibrational frequency treatments,
respectively, to account for deviations from the rigid
rotor-harmonic oscillator (RR-HO) partition function.

∆UHind-Rot-Anh )∆U+∆UHind-Rot +∆UAnh (4)

∆GT
Hind-Rot-Anh )∆GT +∆GT

Hind-Rot +∆GT
Anh (5)

All quantum chemical calculations were done with the
Gaussian package,33 where the hindered rotation treatment
and anharmonicity correction calculations are readily imple-
mented, at the Laboratório de Química Computacional e
Modelagem Molecular, Departamento de Química, Univer-
sidade Federal de Minas Gerais, and also Núcleo de Estudos
em Química Computacional, Departamento de Química,
Universidade Federal de Juiz de Fora.

3. Results and Discussions

Table 1 reports the calculation of absolute entropy for ethane
at room temperature, using the MP2 level of theory and a
series of Pople’s split-valence basis sets, with the aid of the
standard statistical thermodynamics formalism with the
inclusion of a treatment of the hindered-rotation effects
and anharmonicity correction to vibrational frequencies, as
explained in the methodology section. These data are shown
only for reasons of comparison, since a number of theoretical
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studies have been reported for the simple ethane molecule.
When the values given in the last column of Table 1 are
analyzed, it can be seen that the entropy calculated with the
aug-cc-pVTZ basis set deviates only 0.17 J mol-1 K-1 from
the value calculated with Pople’s split valence basis set, with
a smaller deviation obtained when the low-frequency mode
is ignored (0.04 J mol-1 K-1). From the results reported in
Table 1, it can be seen that the combination of anharmonic
correction to vibrational frequencies and a hindered rotor
treatment of the lowest-frequency modes provides a perfect
description of the entropy of ethane at room temperature,
when a large basis set is used (at least 6-311++G(2d,2p))
with a MP2 calculation. The deviation from the experimental
value is only 0.3% (0.2% with the aug-cc-pVTZ basis set),
which is within the experimental uncertainty of (0.63 J
mol-1 K-1. Therefore, for the ethane molecule, the approach
used worked very well, an expected and well-known result
in the literature. It is worth mentioning that the MP2/6-
311++G(3df,3pd) total entropy (the sum of electronic, trans-
lational, rotational, and vibrational contributions is 228.86 J
mol-1 K-1) has a relatively small vibrational contribution of
9.67 J mol-1 K-1, which, however, is assumed to play the key
role when comparison with experimental data is made. The
potential barrier for ethane (V ) 1/2V0(1 + cos 3�)) was also
calculated at the MP2, MP4(SDQ), MP4(SDTQ), CCSD, and
CCSD(T) levels of theory (MP2-optimized geometries), with
the 6-311++G(3df,3pd), aug-cc-pVTZ, and aug-cc-pVQZ basis
sets (staggered f eclipsed process). We found a smooth
dependence with the level of electron correlation for all
methods showing a very reasonable agreement with experi-
mental results within experimental uncertainties (the CCSD(T)/
6-311++G(3df,3pd)//MP2/6-311++G(3df,3pd) value is 11.80
kJ mol-1 and the experimental value 12.03 ( 0.52 kJ mol-1).

An assessment of the suitability of the MP2/6-311++G-
(3df,3pd) and MP2/aug-cc-pVTZ levels of calculation to
evaluate geometrical parameters, rotational constants, and
vibrational frequencies, required by the numerical calculation
of partition functions, can be made by analyzing the data
reported in Tables 2 and 3 for 1,2-difluorethane (as an
example). The good agreement with experimental results
shown in Table 2 for the rotational constants guarantees that
the rotational partition function is satisfactorily well-
represented at the MP2 level of theory. The same holds for

the comparison between experimental and theoretical vibra-
tional frequencies reported in Table 3. When anharmonicity
correction is included, the deviation between experimental
gas-phase vibrational frequencies and calculated anharmonic
frequencies is below 50 cm-1 for the CH stretch vibrations
(high frequencies), being even smaller for deformation and
twist modes (less than 20 cm-1) and lower frequency modes
below 1000 cm-1 (less than 5 cm-1).

Figure 1 shows calculated MP2 thermal quantities (∆U
and ∆GT) using various basis sets for the anti f gauche
process for 1,2-difluorethane (a similar behavior was found
for 1,2-dichloroethane). It can be seen from Figure 1 that
the thermal corrections reached nearly unchanged values
within (0.08 kJ mol-1 at the MP2/6-311++G(3df,3pd) level
of theory for geometry optimization and harmonic frequency
calculation (the same conclusion is reached with the aug-
cc-pVTZ basis set), a variation that would cause a change
on the calculated conformational population of less than 1%.
It is worth saying that an MP4 or CC geometry optimization
and frequency calculation with a triple-�-quality basis set
for 1,2-difluorethane and 1,2-dicloroethane is unthinkable;
even so, we would not expect a significant modification of
the pattern exhibited in Figure 1. Just recently, we have
performed MP4(SDQ) and CCSD geometry optimizations
and harmonic frequency calculations, employing the 6-
311++G(2d,2p) and aug-cc-pVDZ basis sets, for the CF2Cl2

species,37 with the results being in excellent agreement with
MP2 calculations, which adds confidence to our expectation
regarding the trend shown in Figure 1.

The effect of the electronic correlation and size of the basis
set on relative electronic plus nuclear repulsion energies
(∆Eele-nuc) can be analyzed from the results reported in Figure
2 for 1,2-difluorethane (a similar pattern was obtained for
1,2-dicloroethane). It can be seen that the MP4(SDTQ) and
CCSD(T) relative energies for the anti f gauche process
agree within less than 0.21 kJ mol-1, showing a welcome
smooth behavior of the energy values as a function of the
level of theory and basis set quality. It can also be seen from
Figure 2 that the difference between the CCSD(T)/6-
311++G(3df,3pd) and CCSD(T)/aug-cc-pVQZ relative
energies is less than 0.08 kJ mol-1, so the use of MP2/6-
311++G(3df,3pd) thermal corrections and CCSD(T)/6-
311++G(3df,3pd) relative energies can be justified. We may

Table 1. MP2 Calculation of Absolute Entropy (J mol-1 K-1) of the Ethane Molecule in the Staggered Form (T ) 298 K,
p ) 1 atm) Employing Diverse Basis Sets

Entropy 6-31G (d,p) 6-311++G (d,p) 6-311++G (2d,2p) 6-311++G (2df,2pd) 6-311++G (3df,3pd) aug-cc-pVTZ

Sa 226.65 227.11 227.27 227.23 227.15 227.32
STrue-Vib b 221.50 221.79 221.67 221.75 221.71 221.75
SHind-Rot-Anh c 228.07 228.74 228.91 228.86 228.86 {0.3%}d 229.03 {0.2%}d

a Absolute entropy calculated using the standard statistical thermodynamics partition function (particle in a box; rigid rotor and harmonic
oscillator approximations for translational, rotational, and vibrational contributions) including all 3N-6 vibrational modes as harmonic
oscillators. S ) Strans + Srot + Svib (Strans ) 151.17 and Srot ) 68.03 J mol-1 K-1 (MP2/6-311++G(3df,3pd) value). 1 cal ) 4.184 J. b The
low-frequency mode was excluded from the evaluation of the vibrational partition function for the calculation of the absolute entropy, so
3N-7 normal modes were used. Only the true vibrational modes that can be satisfactorily described as harmonic oscillators were
considered. The low-frequency contribution to entropy (Svib

Low-Freq) is 5.44 J mol-1 K-1. Svib
True-Vib ) 2.51 J mol-1 K-1; Svib

Low-Freq ) 5.44 J
mol-1 K-1; Svib

Hind-Rot ) 1.05 J mol-1 K-1; Svib
Anh ) 0.67 J mol-1 K-1. Svib

Hind-Rot-Anh ) Svib
True-Vib + Svib

Low-Freq + Svib
Hind-Rot + Svib

Anh )
9.67 J mol-1 K-1. c Absolute entropy value calculated with the inclusion of anharmonicity and hindered internal rotation corrections for the
evaluation of the vibrational partition function. d Percent error relative to the experimental entropy value (229.49 ( 0.8 J mol-1 K-1) obtained
at 298.1 K from ref 35. The corresponding errors for the TS value are only 0.17 and 0.13 kJ mol-1, respectively, for the 6-311++G(3df,3pd)
and aug-cc-pVTZ basis sets.
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say that the MP4(SDTQ) and CCSD(T) conformational
energies might be trusted with a rough uncertainty estimated
at (0.21 kJ mol-1, based on the pattern shown in Figure 2,
with a corresponding uncertainty in the conformational
population of approximately 1%. Nevertheless, as will be

shown later, this 1% of uncertainty cannot be blamed when
a comparison with experimental results is made. The reported
uncertainties for experimental conformational populations are
in the range of (2–5%, and the uncertainty value for
experimental enthalpy determination is within (0.4–0.8 kJ

Table 2. Ab Initio and Experimental Geometrical Parameters (the Atomic Labels Are Defined Below) and Rotational
Constants for the 1,2-Difluorethane gauche Conformera

exptl. 6-31G(d) 6-311++G(2d,2p) 6-311++G(3df,3pd) aug-cc-pVDZ aug-cc-pVTZ

Bond Distances (Å)b

C1-C2 1.493 ( 0.002 1.501 1.498 1.499 1.507 1.499
C1-F1 (dC2-F2) 1.390 ( 0.003 1.392 1.392 1.383 1.407 1.388
C1-H1 (dC2-H3) 1.099 ( 0.002 1.095 1.088 1.090 1.102 1.091
C1-H2 (dC2-H4) 1.093 ( 0.004 1.093 1.086 1.088 1.100 1.089

Bond Angles (deg)b

F1-C1-C2 (dF2-C2-C1) 110.6 ( 0.5 109.5 110.0 110.3 110.3 110.3
H1-C1-C2 (dH3-C2-C1) 108.4 ( 0.6 110.3 110.7 110.6 109.7 110.7
H2-C1-C2 (dH4-C2-C1) 113.3 ( 0.6 110.3 109.9 109.7 111.0 109.7
F1-C1-H1 (dF2-C2-H3) 109.6 ( 0.3 108.6 108.0 108.1 107.8 108.0
F1-C1-H2 (dF2-C2-H4) 107.8 ( 0.6 108.5 108.1 108.2 107.7 108.2
H1-C1-H2 (dH3-C2-H4) 109.1 ( 0.5 109.6 110.1 109.9 110.3 110.0

Torsion Angle (deg)b

F-C-C-F 71.0 ( 0.3 68.9 70.5 70.3 70.7 70.8

Rotational Constants (MHz)b

A 17322 16855c 17158 17349 16871 17295
B 5013 51448c 5062 5073 4954 5040
C 4383 44505c 4409 4424 4318 4400

a Theoretical values were obtained using the MP2 level and employing various basis sets. b Microwave values taken from ref 36.
Symmetry number: σ ) 2. c The corresponding MP2/6-311G(d,p) A, B, and C values are respectively 17234, 5060, and 4410 MHz.

Table 3. Experimental and ab Initio MP2 Vibrational Frequencies for the 1,2-Difluorethane Gauche Conformer

exptl. MP2/6-311++G (2d,2p) MP2/6-311++G (3df,3pd) MP2/aug-cc-pVDZ MP2/aug-cc-pVTZ

vibrational frequencies
(cm-1)a

observed
frequencies

anharmonic
frequenciesb

harmonic
oscillator

harmonic
oscillator

harmonic
oscillator

harmonic
oscillator

FCCF torsion 147 151 153 154 151 154
CCF bend 327 326 326 328 319 326
CCF bend 500 498 501 506 491 502
CC stretch 865 868 885 892 874 886
CH2 rock 896 895 914 920 893 915
CF stretch 1076 1066 1090 1109 1071 1101
CF stretch 1079 1095 1122 1142 1110 1135
CH2 rock 1116 1123 1148 1150 1139 1146
CH2 twist 1244 1251 1278 1278 1250 1274
CH2 twist 1284 1296 1322 1323 1296 1318
CH2 wag 1377 1393 1427 1418 1388 1415
CH2 wag 1410 1425 1462 1457 1435 1453
CH2 deformation 1460 1476 1516 1513 1480 1513
CH2 deformation 1460 1478 1517 1513 1484 1513
CH2 symmetric stretch 2958 2997 3105 3094 3094 3091
CH2 symmetric stretch 2985 3004 3114 3101 3102 3098
CH2 antisymmetric stretch 2995 3030 3173 3163 3169 3158
CH2 antisymmetric stretch 3001 3042 3185 3174 3179 3169

a Experimental values and assignments obtained from a gas-phase infrared and Raman study reported in ref 8. b Evaluated including
anharmonic corrections.
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mol-1. We have also used the G3(MP2) method,28 which is
known to be recommended for the energy calculation of
fluorine compounds. The obtained relative energy value is

–3.05 kJ mol-1, virtually the same as our CCSD(T)//6-
311++G(3df,3pd) value of –3.14 kJ mol-1. Therefore, the
ab initio post-HF level of calculation employed here can
surely be considered very adequate.

At this point, from the analysis of the theoretical results
reported in Tables 1-3 and Figures 1 and 2, it can be said
that any disagreement with experimental results regarding
the calculation of the anti/gauche conformational population
ratio cannot be attributed only to the ab initio level of theory
used in the present work. It can be seen that the variation in
the calculated molecular properties (structural parameters,
vibrational frequencies, and relative energies) as a function
of the correlated ab initio level of theory and quality of the
basis set would cause a change in the conformational
population values, certainly well below the corresponding
experimental uncertainties (2–5%). Therefore, we are con-
fident in using our ab initio data to analyze the performance
of the theoretical models for calculating thermal corrections
through the evaluation of molecular partition functions,
making use of the statistical thermodynamics formalism and,
therefore, enthalpy and Gibbs free-energy values, leading to
the theoretical determination of conformational population
ratios.

Now, we finally turn to the analysis of the ab initio
temperature-dependent enthalpy and Gibbs population results
for the anti f gauche processes for 1,2-difluoroethane and
1,2-dichloroethane reported in Tables 4 and 5, with the
temperature range being chosen according to the reported
experimental conditions. Only the results obtained with the
6-311++G(3df,3pd) basis set and CCSD(T) level of theory
are reported. Just to mention, as quoted in Tables 4 and 5,
the MP2/aug-cc-pVTZ values for ∆U and ∆GT show a very
small deviation from the corresponding MP2/6-311++G-
(3df,3pd) values (approximately 0.1 kJ mol-1 at 25 °C).
Therefore, essentially the same conformational population
is obtained using the aug-cc-pVTZ basis set.

It can be seen from Tables 4 and 5 that the effect of the
anharmonic correction to the vibrational frequencies on the
thermal energies, as explained in the computational section,
is quite small ((0.04 kJ mol-1) and so can be neglected;
therefore, only the treatment of the low-frequency modes
need to be considered. It is important to make it clear that
the anharmonicity effect was not included explicitly in the
vibrational partition function, which can easily been done
for diatomic molecules;18 however, much more work is
required for polyatomic molecules. In the present case, the
harmonic oscillator functional dependence was used for the
vibrational partition function, but the anharmonic frequencies
are utilized instead of harmonic values.

As far as enthalpy calculations are concerned, it can be
seen from Table 4 that the ab initio and experimental
enthalpy values for the antif gauche process exhibit a very
fair agreement, for both 1,2-dichloroethane and 1,2-difluo-
rethane, independent of the way that the low-frequency
modes are treated. In other words, the internal energy
contribution is not so sensitive to the model used to treat
the low-frequency modes in the calculation of relative
enthalpy values, with the ∆Eele-nuc contribution being of major
relevance.

Figure 1. Anti f gauche MP2 thermal energy (at room
temperature) variation for 1,2-difluorethane as a function of
the basis set quality. The MP2/6-311++G(3df,3pd) and MP2/
aug-cc-pVTZ T∆S (entropic contribution) values are respec-
tively –0.84 and –0.80 kJ mol-1 (∆GT ) ∆U - T∆S ).

Figure 2. Anti f gauche energy (∆Eele-nuc in the vacuum)
variation for 1,2-difluorethane as a function of the level
of calculation. The CCSD(T)/6-311++G(3df,3pd)//MP2/6-
311++G(3df,3pd) and CCSD(T)/aug-cc-pVQZ//MP2/aug-cc-
pVTZ relative energy values are respectively –3.14 and –3.18
kJ mol-1. The corresponding MP4(SDTQ) values are respec-
tively –3.26 and –3.26 kJ mol-1 (the MP4(SDTQ)/cc-pV5Z//
MP2/aug-cc-pVTZ value is –3.26 kJ mol-1).
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Regarding 1,2-dichloroethane, Ayala and Schlegel19 have
shown that the hindered-rotor approach would be appropriate
in the evaluation of the vibrational partition function using the
HF/6-31G(d) level of calculation,39 which is also corroborated
by the results reported here. In the present article, comparisons
with experimental results are made for conformational popula-
tions, which were determined experimentally with a satisfactory
precision, and calculated at the ab initio level using a specific
vibrational partition function containing a treatment of the low-
frequency modes reported by Ayala and Schlegel19 (imple-
mented in the Gaussian package33). Then, when the agreement
between theoretical and experimental populations is analyzed,

an assessment of the performance of the hindered-rotor approach
can be made. From Table 5, the effectiveness of the hindered-
rotor approach to describe the 1,2-dichloroethane species is
promptly seen, leading to a good agreement with gas-phase
electron diffraction conformational population data. The simple
procedure of neglecting the low-frequency modes (three modes
at room temperature) in the evaluation of the vibrational partition
function, which may be considered as a rough but simple
approximation, used successfully in the conformational analysis
of cyclooctane43,44 and cycloheptane,45 also works well for 1,2-
dichloroethane up to a temperature of 40 °C.

Table 4. Temperature-Dependent Enthalpy (∆H) Values Calculated Including Anharmonicity and Hindered-Rotation Effects
on the Internal Energy Correction (∆U) Calculated at the MP2/6-311++G(3df,3pd) Level, for the anti f gauche
Interconversion Process for 1,2-Dichloroethane and 1,2-Difluorethanea

1,2-dichloroethane ∆Ub ∆UTrue-Vibc ∆UHind-Rotd ∆H ∆HTrue-Vibc ∆HHind-Rot-Anhe ∆H exptl.

T ) 25 °C -0.50 -0.96 -0.04 4.98 4.52 4.90 [5.0 ( 0.8]f

T ) 40 °C -0.50 -0.92 -0.04 4.98 4.52 4.90
T ) 140 °C -0.54 -0.84 -0.04 4.94 4.64 4.85

1,2-difluorethane ∆Ub ∆UTrue-Vibc ∆UHind-Rotd ∆H ∆HTrue-Vibc ∆HHind-Rot-Anhe ∆H exptl.

T ) 25 °C -0.63 -0.96 -0.08 -3.77 -4.10 -3.89 [-3.39 ( 0.54]g

T ) 56 °C -0.67 -0.96 -0.13 -3.81 -4.10 -3.97
T ) 92 °C -0.67 -0.96 -0.13 -3.81 -4.10 -3.97

a CCSD(T)/6-311++G(3df,3pd)//MP2/6-311++G(3df,3pd) ∆Eele-nuc values (5.48 and -3.14 kJ mol-1 for 1,2-dichloroethane and 1,2-
difluorethane, respectively) were used. All values are in kJ mol-1. b The MP2/aug-cc-pVTZ ∆U values for 1,2-dichloroethane and
1,2-difluorethane are respectively –0.50 and –0.63 kJ mol-1 at 25 °C. c Calculated using the vibrational partition function evaluated
excluding the low-frequency normal vibrational modes (three modes at room temperature). Only the true vibrational modes that can be
satisfactorily described as harmonic oscillators were considered. d Internal rotation correction to the MP2/6-311++G(3df,3pd) internal energy
term (∆U) value (one internal rotation was identified for all four species). e ∆HHind-Rot-Anh ) ∆Eele-nuc + ∆U + ∆UHind-Rot + ∆UAnh. Value
obtained including the anharmonicity and hindered internal rotation correction to calculation of the internal energy correction. The
anharmonic correction to internal energy (∆UAnh) is –0.04 kJ mol-1 for both 1,2-dichloro- and 1,2-difluorethane, evaluated at the MP2/
6-311++G(2d,2p) level and room temperature. This should be our best enthalpy value. f Experimental value from ref 38. g Experimental
value from ref 8.

Table 5. Temperature-Dependent Gibbs Population (%Pop.) and Relative Gibbs Free Energy (∆G) Values Calculated
Including Anharmonicity and Hindered-Rotation Effects on the Entropy Contribution (T∆S) to the Thermal Energy Correction
(∆GT) Calculated at the MP2/6-311++G(3df,3pd) Level, for the anti f gauche Interconversion Process for
1,2-Dichloroethane and 1,2-Difluorethanea

1,2-dichloroethane T∆Sb T∆S True-Vibc T∆S Hind-Rotd ∆G
%Pop.

anti ∆G True-Vibc
%Pop.

anti ∆G Hind-Rot-Anhe
%Pop.

anti
%Pop.

exptl. anti

T ) 25 °C -0.46 0.54 1.67 5.44 90% 3.97 83% 3.77 82% [78 ( 5%]f

T ) 40 °C -0.46 0.63 1.76 5.44 89% 3.93 82% 3.68 81% [77.0 ( 1.7%]g

T ) 140 °C -0.67 0.71 2.30 5.61 84% 3.93 76% 3.26 72% [67.5 ( 2.2%]g

1,2-difluorethane T∆S b T∆S True-Vibc T∆S Hind-Rotd ∆G
%Pop.

anti ∆G True-Vibc
%Pop.

anti ∆G Hind-Rot-Anhe
%Pop.

anti
%Pop.

exptl. anti

T ) 25 °C -0.71 0.21 -0.17 -3.05 23% -4.31 15% -2.93 23% [37 ( 5%]h

T ) 56 °C -0.84 0.25 -0.21 -2.97 25% -4.35 17% -2.85 26% [41 ( 5%]h

T ) 92 °C -0.92 0.25 -0.21 -2.89 28% -4.35 19% -2.76 29% [44 ( 5%]h

a CCSD(T)/6-311++G(3df,3pd)//MP2/6-311++G(3df,3pd) ∆Eele-nuc values (5.48 and -3.14 kJ mol-1 for 1,2-dichloroethane and 1,2-
difluorethane respectively) were used. All values are in kJ mol-1. b The MP2/aug-cc-pVTZ T∆S values for 1,2-dichloroethane and 1,2-
difluorethane are respectively –0.46 and –0.84 kJ mol-1 at 25 °C. The room-temperature MP2/6-311++G(3df,3pd) rotational entropy
(T∆Srot) contributions are 0.46 and 0.21 kcal mol-1 for 1,2-dichloroethane and 1,2-difluorethane, respectively (identical to the MP2/
aug-cc-pVTZ values). c Calculated using the vibrational partition function evaluated excluding the low-frequency normal vibrational modes
(three modes at room temperature). d Internal rotation correction to the MP2/6-311++G(3df,3pd) entropy term (T∆S ) value (one internal
rotation was identified for all four species). e ∆GHind-Rot-Anh ) ∆Eele-nuc + ∆GT + ∆GT

Hind-Rot + ∆GT
Anh; (∆GT ) ∆U - T∆S ). Values

obtained include the anharmonicity and hindered internal rotation correction to the calculation of the thermal energy correction (∆GT). The
anharmonic correction to entropy (T∆SAnha) is –0.08 kJ mol-1, for both 1,2-dichloro- and 1,2-difluorethane, evaluated at the MP2/
6-311++G(2d,2p) level and room temperature. This should be our best Gibbs free-energy value. f Experimental value from ref 4. See also
ref 38. g Experimental value from ref 40 h Experimental value from ref 8. There are two other population datapoints obtained from an
electron diffraction experiment that differ considerably from the more recent reported value in ref 8 based on the vibrational spectroscopy
analysis: 9% of the anti form from ref 41 at room temperature and 4.0 ( 1.8 at 22 °C from ref 42.
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For 1,2-difluorethane, a satisfactory agreement with ex-
perimental conformational population data was not obtained.
An interesting feature that can be seen from Table 5 is the
fact that the procedure of treating the lowest-frequency modes
as a hindered rotor leads to a very small correction, compared
to the corresponding value obtained for 1,2-dichloroethane,
providing virtually the same conformational population as
the consideration of all 3N-6 modes as harmonic oscillators.
So, in this case, the procedure was useless. The alternative
of ignoring the three lowest-frequency modes also does not
work well here, similar to the case of the cyclononane
molecule.46

The calculated CCSD(T)/6-311++G(3df,3pd)//MP2/6-
311++G(3df,3pd) potential barriers (V0) are shown in Figure
3 for the antiT TS1T gauche and gaucheT TS2T gauche
processes. It can be seen from Figure 3 that the energy barrier
for anti f gauche interconversion is 19.2 (13.8) kJ mol-1

for 1,2-dichloroethane and 12.1 (9.2) kJ mol-1 for the gauche
f anti interconversion in 1,2-difluorethane (the values in
parenthesis are for the reverse process). The corresponding
barriers for the interconversion between two equivalent
gauche structures are 31.4 and 31.8 kJ mol-1 respectively
for 1,2-dichloroethane and 1,2-difluorethane. The gauchef
anti barrier for the fluorine species is 7.1 kJ mol-1 (4.6 kJ
mol-1 for the reverse barrier) smaller than the antif gauche
barrier for 1,2-dichloroethane. The experimental barriers
reported for 1,2-difluorethane8 are 8.87 (anti T TS1 f
gauche) and 23.93 kJ mol-1 (gauche f TS2 f gauche).
The former is close to the CCSD(T)/6-311++G(3df,3pd)//
MP2/6-311++G(3df,3pd) calculated value (12.1 kJ mol-1),
whereas the latter is predicted to be 31.8 kJ mol-1, a
deviation of almost 8 kJ mol-1. At temperatures such that
V0 , kT (where k is the Boltzmann constant and T the
absolute temperature), the internal rotation is essentially free
and can be treated by methods similar to those for the rigid
rotor, and when V0 . kT, the molecule is trapped at the

bottom of the potential well and the motion is that of a simple
torsional vibrational, which can be treated by a method
similar to that used for the simple harmonic oscillator. For
intermediate V0 values, as the ones reported in this work for
1,2-difluorethane (V0/kT ) 20.5 kJ mol-1) and 1,2-dichlo-
roethane (V0/kT ) 32.6 kJ mol-1), at room temperature, the
motion is intermediate between that of a free rotation and
that of torsional vibration. In this work, we used a modified
hindered rotor partition function for the lowest-frequency
vibrational mode proposed by Ayala and Schlegel,19 which
has a dependence on V0/kT, as previously reported by Pitzer
and Gwinn.29 We assumed that the molecular vibrational
partition function (qvib) can be written as a product of
harmonic oscillator (HO) and hindered rotor (Hind-Rot)
contributions according to eq 6, and so the thermodynamic
functions are obtained as a sum of two terms, and then the
hindered rotor correction is analyzed.

qvib ) qHOqHind-Rot (6)

Looking at the individual values for the hindered rotor
correction, it can be seen that the problem is with the gauche
form of 1,2-difluorethane. For 1,2-dichloroethane, the values
of the respective corrections for entropy contribution are
TSanti

Hind-Rot ) 0.17 and TSgauche
Hind-Rot ) 1.84 kJ mol-1.

However, for 1,2-difluorethane, the values are rather differ-
ent, with the correction for the gauche structure being even
less than that for the anti form, that is, TSanti

Hind-Rot ) 0.33
and TSgauche

Hind-Rot ) 0.17 kJ mol-1. Therefore, it appears
that the hindered rotor correction for the 1,2-difluorethane
gauche conformer should be similar to that for the 1,2-
dichloroethane (around 1.67 kJ mol-1), however, having a
negative value. We cannot say for sure if only the variation
in V0 with respect to 1,2-dichloroethane affects so much the
hindered rotor partition function given in ref 19 to the point
of making the agreement with experimental conformational
population so poor.

Figure 3. CCSD(T)/6-311++G(3df,3pd)//MP2/6-311++G(3df,3pd) relative energies (in units of kJ mol-1) for the four stationary
points located on the MP2/6-311++G(3df,3pd) PES for 1,2-dichlorothane and 1,2-difluorethane: anti minimum, TS1 structure,
gauche minimum, TS2 structure. The room temperature V0/kT barrier values are 32.6 kJ mol-1 (anti f gauche process) and
20.5 kJ mol-1 (gauche f anti process), respectively, for the chlorine and fluorine species (1 cal ) 4.184 J; 1 kcal mol-1 )
349.38 cm-1).
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With the aim of clarifying the reason for the disagreement
between theoretical and experimental gas-phase conforma-
tional population for 1,2-difluorethane, we decided to use
the experimental entropy for the anti T gauche process,
obtained from the analysis of the vibrational spectral data
dependence with temperature reported in ref 8, where by
applying the van’t Hoff isochore equation the entropy change
for the process could be evaluated. The experimental entropy
contribution at room temperature is T∆SExpt ) –2.05 kJ
mol-1. Our MP2/6-311++G(3df,3pd) best value is –0.71
kJ mol-1 (a quite sizable 65% difference). Using the experi-
mental entropy and our ab initio CCSD(T)/6-311++G-
(3df,3pd) relative energy (∆Eele-nuc) and MP2/6-311++G-
(3df,3pd) internal energy (∆U), we obtain a room-temperature
Gibbs population of 33% of the anti form, in good agreement
with the experimental value of 37 ( 5%. Therefore, it is
quite evident that our calculated entropy for the anti T
gauche process of 1,2-difluorethane, using the combined
quantum mechanical/statistical thermodynamic approach, is
in serious error. It is well-known that the entropy term
(T∆Svib) has a much higher sensibility to the low-frequency
mode than the internal energy (∆Uvib), which can be easily
seen from Figure 4, where the variation of the respective

thermodynamic functions with the vibrational frequency is
shown. ∆Uvib is very monotonically dependent on the
frequency in the low-frequency region, which explains why
our calculated enthalpies are in good agreement with the
experimental ones. On the contrary, the entropy counterpart
is strongly dependent on the frequency in the region of 0–200
cm-1; therefore, the treatment of low-frequency modes
definitively has a pronounced effect on the entropy evalua-
tion. When we used the experimental entropy for the gauche
f anti process (1,2-difluorethane) instead of the calculated
one using the hindered rotor approach, the agreement with
experimental results is fine. This is irrefutable proof that the
calculated T∆Svib entropy contribution to the Gibbs free
energy (∆G) is poorly described, and it becomes evident that
this is the major reason for the serious disagreement with
the experimental determination of the conformational popu-
lation for the 1,2-difluorethane. Also shown in Figure 4 is
the individual hindered-rotor corrections for each conformer
(anti and gauche) and also for the ethane molecule only, for
reasons of comparison.

The calculated ab initio (MP2/6-311++G(3df,3pd) value)
TSvib contribution due to the first low-frequency mode for
the individual anti and gauche forms of 1,2-dichloro- and

Figure 4. Thermodynamic energy or internal thermal energy (U) and entropic (TS) vibrational contributions (in units of kJ mol-1)
represented as a function of the vibrational frequency, calculated with the aid of the statistical thermodynamics formulas, within
the harmonic oscillator (HO) approximation (HO vibrational partition function), at room temperature and normal pressure. The
specific TS vibrational contribution due to the lowest frequency mode, using a hindered-rotor partition function and free-rotor
approach is also shown for ethane, 1,2-chloro- and 1,2-difluoroethane (MP2/6-311++G(3df,3pd) value).
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1,2-difluorethane, and also the ethane molecule (staggered
conformation), evaluated using the hindered-rotor approach
from ref 19 (named TSHind-Rot) and also considering the first
vibrational mode as a free rotor (TSFree-Rotor) are highlighted
in Figure 4 (the free-rotor contribution is the same for the
anti and gauche forms, since there is no barrier for rotation,
so the effect on the entropy difference is null, which is
equivalent to just ignoring the first low-frequency mode in
the evaluation of the vibrational partition function). The
hindered-rotor correction for the anti form of the fluor and
chlorine species is almost the same. However, for the gauche
form, the correction for the chlorine is quite different from
the fluorine species, which practically has no variation at
all, as already mentioned before. Then, the contribution of
the hindered rotation to entropy is virtually zero for the 1,2-
difluorethane, and this can be a reason for the disagreement
with experimental results. Analyzing the rotational constants
and spatial orientations with respect to the principal axis
coordinate system, and using the rotational entropy data for
CH3Cl and CH3F and the corresponding values for •CH2Cl
and •CH2F radicals as a model for a free rotating group,
assuming the first low-frequency mode as a free rotor, we
estimated the contribution to the vibrational entropy
(TSFree-Rotor) to be ∼9.2 and 8.4 kJ mol-1 respectively for
the chlorine and fluorine species. In the case of the ethane
molecule, when the rotational entropy data for CH4 and the
•CH3 radical is used for modeling the free rotating CH2 group,
the free rotor value for the first vibrational mode is estimated
to be ∼5.4 kJ mol-1. Therefore, there is no point in
considering the internal rotation mode as a free rotor, in the
case of 1,2-difluorethane. The sizable difference in the energy
barrier for internal rotation between the chlorine (V0 ) 19.2
kJ mol-1) and fluorine (V0 ) 12.1 kJ mol-1) species (anti
f gauche and gauchef anti processes respectively) would
probably make a contribution to the poor performance of
the hindered rotor partition function in the case of 1,2-
difluorethane, and consequently a visible disagreement with
experiment, regarding the anti/gauche conformational popu-
lation ratio values. However, we cannot quantify the extent
of this effect. We may just speculate that the vibrational
partition used in this work may have an inadequate depen-
dence on the V0/kT value, which could make it unsuitable
for substituted ethane molecules exhibiting the gauche effect,
such as 1,2-difluorethane. If only the lowest-frequency mode
is ignored, essentially the same result is obtained when it is
considered a harmonic oscillator in the vibrational partition
function for 1,2-dichloroethane, corroborating that it should
be treated separately as a hindered rotor, and not just
disregarded, where, as can be seen in Figure 4, it adds a
substantial correction to the anti/gauche entropy difference
(T∆SHind-Rot ) 1.67 kJ mol-1) and therefore conformational
population. Nevertheless, the same reasoning does not apply
to 1,2-difluorethane, where the treatment of the first vibra-
tional normal mode as a hindered rotor did not make any
noticeable difference (T∆SHind-Rot ) –0.17 kJ mol-1). For
the ethane molecule, the effect due to the hindered rotation
is also small (TSHind-Rot ) 0.31 kJ mol-1; SHind-Rot ) 1.05
J mol-1 K-1), but improving the deviation from experimental

results from 1% to 0.5%. So, in this well-known case, the
hindered-rotor model works perfectly well.

It is also opportune to emphasize here that, as already
pointed out by Ayala and Schlegel,19 in principle, most of
the problem resides in the identification of the internal
rotation modes. Large molecules can have a large number
of low-frequency modes which can include not only internal
rotations but also large amplitude collective bending motions
of atoms. Moreover, some of the low-frequency modes can
be a mixture of such motions. In the case of cyclic molecules
featuring rings bigger than six members in size, there are
ring torsional modes, and similar to internal rotations, ring
torsions can cause problems in the evaluation of thermody-
namic functions (see for example refs 44–46). For simple
systems such as substituted ethane molecules, it is possible
to unambiguously identify the low-frequency internal rotation
modes and also use an adequate ab initio correlated level of
theory, with a good quality basis set, to provide equilibrium
geometries and vibrational frequencies necessary for the
evaluation of partition functions, and also relative energy
values, for the calculation of thermodynamic quantities. In
this case, an assessment of the performance of approximated
methods available to predict conformational populations can
be made.

4. Conclusions

It is usually assumed that the standard statistical thermody-
namics formalism can be safely applied once the quality of
the distinct energy values, which are necessary for the
evaluation of partition functions, is assured by the use of
accurate quantum chemical methods. In this work, we used
the best computational affordable quantum chemical methods
in the calculation of geometrical parameters and harmonic
frequencies (MP2/6-311++G(3df,3pd) and MP2/aug-cc-
pVTZ), required for the evaluation of rotational and vibra-
tional partition functions (and therefore thermal correction,
∆GT), and highly correlated post-HF calculations (CCSD(T)/
6-311++G(3df,3pd) and CCSD(T)/aug-cc-pVQZ) of relative
energies (∆Eele-nuc), required for the theoretical calculation
of Gibbs free energies (∆G) and, therefore, conformational
population values. We selected two substituted ethane
molecules, where for one of them (1,2-difluorethane) the
gauche effect is known to be operating. In the calculation
of thermal corrections, we used a hinder-rotor treatment for
the low-frequency mode and also anharmonicity correction
to the vibrational frequencies within the harmonic oscillator
partition function. The agreement with gas-phase experi-
mental data was fine for 1,2-dichloroethane; however,
reasonable accordance with experimental results was not
obtained in the case of 1,2-difluorethane. The cause of the
disagreement with the experimental conformational popula-
tion ratio is not the ab initio level of calculation employed,
since we analyzed the behavior of the methodology as a
function of level of theory and size of the basis set and could
guarantee that, by improving the level of calculation to a
computational unreachable degree of sophistication, no
significant variation of the conformational population would
be observed. Therefore, the results reported here show
definitively that the problem of the agreement with experi-
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ment is related to the treatment used for the low-frequency
vibrational modes. The inclusion of anharmonic corrections
(using anharmonic frequencies and the harmonic oscillator
partition function) and a treatment of low-frequency modes
as a hindered rotor for the evaluation of the thermal
correction (∆GT

Hind-Rot-Anh) did not improve the agreement
with experimental results regarding conformational popula-
tion values, in the case of 1,2-difluorethane. The lower
gauchef anti interconversion energy barrier found for 1,2-
difluorethane, compared to that for 1,2-dichloroethane (anti
f gauche), may contribute to the poor performance of the
hindered rotor partition function; however, we cannot
quantify its extent nor how important the gauche effect is
for the whole affair.

It is interesting to point out that a great part of the
molecular systems of interest to a number of quantum
chemists, using standard computer codes (freely delivered
or not) where the quantum mechanical and statistical
thermodynamics formalism are readily implemented in the
calculation of thermodynamic properties, may have pecu-
liarities that can easily be overlooked. In this case of
substituted ethane molecules, only three low-frequency
modes are present, and therefore, a theoretical, sound, and
adequate computational model is available or can be pursued.
However, for large molecular systems, a considerable number
of low-frequency modes are certainly present, and use of
the harmonic oscillator partition function is not advised. So,
in this case, finding a satisfactory computational treatment
is indeed a hard task. Fortunately, in many situations, energy
differences are calculated, and so, a cancelation of errors is
often present. Then, the effect of the low-frequency modes
may be of small importance, mainly when the size of the
relative energy value (∆Eele-nuc) is much larger than the
thermal energy correction.
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Abstract: In this work, we compare the performance of different DFT implementations, using
analytical and numerical basis sets for the expansion of the atomic wave function, in determining
structural and energetic parameters of Cisplatin and some biorelevant derivatives. Characteriza-
tion of the platinum-containing species was achieved at the HF, MP2, and DFT (PBE1PBE,
mPW1PW91, B3LYP, B3PW91, and B3P86) levels of theory, using two relativistic effective
core potentials to treat the Pt atom (LanL2DZ and SBK), together with analytical Gaussian-type
basis sets as implemented in Gaussian03. These results were compared with those obtained
with the SIESTA code that employs a pseudopotential derived from the Troullier-Martins
procedure for the Pt atom and numerical pseudoatomic orbitals as basis set. All modeled
properties were also compared with the experimental values when available or to the best
theoretical calculations known to date. On the basis of the results, SIESTA is an excellent
alternative to determine structure and energetics of platinum complexes derived from Cisplatin,
with less computational efforts. This validates the use of the SIESTA code for this type of chemical
systems and thus provides a computationally efficient quantum method (capable to linear scaling
at large sizes and available in QM/MM implementations) for exploring larger and more complex
chemical models which shall reproduce more faithfully the real chemistry of Cisplatin in
physiological conditions.

Introduction

Cisplatin (cis-diamminedichloroplatinum(II)) is one of the
most used drugs against cancer, being particularly effective
in the treatment of testis, ovary, head and neck, bladder, and
lung malignancies.1 Despite the research efforts accumulated
during the last 30 years addressed to elucidate the mode of
action of the drug at the cellular and biochemical levels,1,2a–e

the knowledge of the intimate chemical interactions estab-
lished by the drug with relevant biomolecules (which
determine cellular sensitiveness and resistance) is still at a
stage far from satisfactory.2d,e

Reaching a deep understanding of these issues both in the
case of Cisplatin and other active analogues requires not only
a detailed characterization of the molecular mechanism of
aquation (successive substitution of the labile ligands by
water molecules, a process nowadays recognized as the
activation step of these drugs in the cell)2d but also a
complete study of the interaction and covalent binding of
the drug to DNA, their pharmacological target. In the last
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two decades, theoretical and computational chemistry has
started to make significant contributions on these and other
related topics,3–6 essentially by means of studies using
reduced representations of the corresponding biological
systems. Whereas gaining insight into the details of reactivity,
interactions, and chemical processes established between
platinum drugs and water/DNA requires the use of first
principles quantum correlated methodssdensity functional
theory (DFT) being the current privileged choicessize and
complexity of the systems under physiological conditions
turns necessary the use of hybrid quantum classical (QM/
MM) descriptions to remain the study affordable. An efficient
computational package available for this kind of combined
quantum/classical descriptions is based upon an implementa-
tion of DFT using numerical basis sets.7 For that reason, in
this work we will validate technical choices as well as to
ascertain the reliability of the outcomes of modeling regard-
ing structure, reactivity and energetics of platinum-containing
systems.

Although more than 30 articles3–6 have appeared since the
early 1980s applying quantum chemistry methods to char-
acterize molecular properties (geometrical, electronic and
vibrational, both as a goal by themselves3a,f–i,4a,b or aimed
to develop force-field parameters3b,c) of Cisplatin and related
compounds, participant species, thermodynamics and kinetics
of aquation processes of platinum square planar complexes,4d,5

and platination of DNA nucleobases,4c–f,6 most of them
employed implementations of the correlated theoretical level
of choicesDFT within themsusing different schemes of
relativistic effective core potentials (ECPs) together with
Gaussian-type basis sets, the use of DFT implementations
with other kinds of basis sets being essentially limited to
few cases addressing the most complex studies (both using
plane waves4c–f or numerical-atomic orbitals as basis
set3f,5a,d,n,6j,k). Only a marginal part of this work done during
almost 25 years has been addressed to systematically assess
the performance at the task of different quantum mechanics
methods3d,e,5b,e (including several different DFT exchange/
correlation functionals and ECPs/basis set schemes) and the
relevance of including well balanced solvent/environment
representations4d–f,5b,h,j–n in coping with some of the afore-
mentioned issues.

A first key article pioneering in validating the use of DFT
(BLYP) to describe the structure and bonding of Cisplatin,
Transplatin, and their mono/diaqua-substituted derivatives
was published in 1995 by Carloni et al.4a using plane waves
for the expansion of the electronic wave function. Geo-
metrical parameters and vibrational frequencies in fairly good
agreement with the observed values were obtained, and
frontier Kohn–Sham orbitals were also analyzed therein,
finding for the first time a highest occupied molecular
orbital-lowest unoccupied molecular orbital (HOMO–LU-
MO) gap consistent with experiment. Some years later,
Pavankumar et al.3d provided a comprehensive test on the
performance of HF and Möller–Plesset levels in modeling
Cisplatin properties mostly using a wide range of Pople’s
basis sets and different ECPs schemes. More recently,
whereas Wysokinski and Michalska3e analyzed the behavior
of several pure and hybrid DFT functionals (using different

ECP/basis set combinations) in predicting structural param-
eters, bonding and IR frequencies of Cisplatin and Carbo-
platin. Zhang et al. 5e pursued a similar study focusing on
the geometrical structure of Cisplatin, PtCl4

2-, and water.
Both groups agreed in selecting mPW1PW91 as the most
reliable functional. However, none of these studies system-
atically addressed neither the performance in predicting
energetics of the aquation processes (a task whose results
reported by different groups have raised some controversies,
their quality being sensitive to the ECP/basis set employed5e

as well as to the description of microscopic/bulk solvent
effects5b,h,j–n) nor that in describing bonding, thermodynamics
and kinetics of the reaction between Cisplatin and DNA, even
resorting to minimal models of the latter (bare nucleobases/
nucleotides).

Evaluation of the existing DFT functionals and imple-
mentations, in particular those extensively used at the present
for studying Cisplatin chemistry (mostly hybrid functionals),
becomes necessary to calibrate and extend current knowledge
to larger molecular systems and helps in the development
of better methodological tools. On the other hand, the need
to answer several questions in our own applied research
regarding the mechanism of action of Cisplatin and related
species in complex biological environments (i.e., including
different double strand B-DNA sequences, Na+ counterions
and a realm of water molecules)8 using proper structures and
energetics, obtained with affordable strategies such as those
present in the SIESTA (Spanish Initiative for Electronic
Simulations with Thousands of Atoms) package,7 was
another practical motivation for pursuing the study presented
here.

In terms of computational cost, construction of the
electronic wave functions based on numerical-atomic orbitals
has a great advantage over analytical localized basis sets of
comparable accuracy. This approximation is used by DFT
implementations in this code, providing computationally
efficient quantum methods capable to linear scaling at large
sizes (>100 atoms), also very efficient at intermediate
molecular sizes. SIESTA uses the standard Kohn–Sham self-
consistent density functional method both in the local density
(LDA-LSD) and generalized gradient (GGA) approximations
with norm-conserving pseudopotentials.7 This type of quan-
tum mechanics software can be used for the study of medium
size or large systems respectively using QM (i.e., structure
of the drugs and simplified representations of their chemical
transformations) or QM/MM strategies (i.e., covalent interac-
tions between water/DNA and Cisplatin under physiological
conditions). To do so, validation of key issues coming from
modeling against experimental data becomes mandatory, as
well as comparing the performance of these implementations
using numerical basis sets against other standard implemen-
tations of DFT using analytical ones, such as those currently
included in GAUSSIAN9a or GAMESS,9b the main compu-
tational tools chosen in pursuing recent studies of Cisplatin
and other platinated drugs interactions.3g–i,5g–m,6q,r

The model situations chosen in the present work to validate
and compare different DFT strategies are the following: (i)
Cisplatin; (ii) Cisplatin monoaqua-substituted derivative; (iii)
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Cisplatin 9-methyl-guanine adduct; and (iv) the first aquation
process of Cisplatin.

Theoretical Methods

The structures of Cisplatin, 9-methyl-guanine (9metG), water,
and the monoaquo complex shown in Figure 1 were fully
optimized as isolated species minima, at different levels of
theory using gradient techniques, without imposing any
structural or symmetry constraints.

Calculations using Gaussian basis sets were performed at
the HF, MP210 (full and frozen core), and DFT levels using
the GGA functional PBE1PBE11a and one- to three-parameter
hybrid functionals (mPW1PW91,11b B3LYP,11c,d B3PW91,11c,e

and B3P8611c,f) as implemented in Gaussian03, revision
B05.9 Two ECP schemes, constituted by a pseudopotential
and the concomitant double-� (D�) quality basis set, were
applied for Pt as follows: (1) Stevens, Basch, and Krauss
(SBK)12a,b ECP with CEP-31G that leads to the (7s7p5d)/
[4s4p3d]-GTO valence basis set for Pt and (2) Los Alamos
National Laboratory’s LanL2DZ ECP developed by Hay and
Wadt,13a–d that employs the (8s6p3d)/[5s3p2d]-GTO valence
basis set for Pt. The same Pople-type basis set with
polarization functions 6-31G(d)14 is used for ligands in
Cisplatin (NH3 and Cl-) and derivatives (H2O and 9-methyl-
guanine). The nature of the stationary pointssminimaswas
verified at each level of theory considered here, based on
the analysis of the corresponding analytical Hessian matrix.

QM computations using numerical basis sets were per-
formed at the DFT level with SIESTA code.7 SIESTA has
shown an excellent performance for medium and large
systems and has also proven to be appropriate for biomol-
ecules and metal ions in biological systems.15 SIESTA reads
the norm-conserving pseudopotentials in semilocal form (a
different radial potential V(r) for each angular momentum
l), generally using the Troullier-Martins parametrization.16

Then, it transforms this semilocal form into the fully nonlocal
form proposed by Kleinman and Bylander (KB).7 The use
of standard norm-conserving pseudopotentials16 avoids the
computation of core electrons, smoothing at the same time
the valence charge density. Pt is treated as an 18-electron
system, namely with both n ) 5 and n ) 6 considered as

valence electron shells (Table 1 reports the reference valence
configurations, cutoff radius, and total number of KB
projectors used for each atom). SIESTA uses basis set
functions that consist of localized (numerical) pseudoatomic
orbitals (PAO), which are projected on a real space grid to
compute the Hartree potential and exchange-correlation
potential’s matrix elements. D� plus polarization quality basis
sets were employed for all atoms, with a PAO energy shift
of 20 meV and a grid cutoff of 200 Ry.8 To improve the
thermodynamic characterization of species participating in
Cisplatin aquation process, single-point calculations over the
structure of the isolated species minima were carried out with
a PAO energy shift of 0.5 meV and a grid cutoff of 300 Ry.
Calculations were performed using the Perdew, Burke, and
Ernzerhof GGA functional10 (PBESIESTA), which coincides
with the PBE1PBE functional implemented in Gaussian03
(G03).

The energy of reaction has been calculated as the subtrac-
tion between the sum of the products and the sum of the

Figure 1. Schematic view of the three platinated systems studied: (A) Cisplatin; (B) Cisplatin-9metG adduct; (C) reactants and
products of the first aquation process of Cisplatin. Intramolecular and intermolecular hydrogen bonds are shown with dashed
lines.

Table 1. Reference Valence Configurations, Cutoff
Radius, and Total Number of KB Projectors Used in the
Troullier-Martins Procedure to Obtain the
Pseudopotentials for Each Atom

atom valence configuration cutoff radius no. of KB projectors

H 1s(1.00) 1.25 9
2p(0.00)
3d(0.00)

C 2s(2.00) 1.25 16
2p(2.00)
3d(0.00)
4f(0.00)

N 2s(2.00) 1.20 16
2p(3.00)
3d(0.00)
4f(0.00)

O 2s(2.00) 1.13 16
2p(4.00)
3d(0.00)
4f(0.00)

Cl 3s(2.00) 1.50 16
3p(5.00)
3d(0.00)
4f(0.00)

Pt 6s(1.00) 2.47 16
6p(0.00) 2.87
5d(9.00) 1.98
5f(0.00) 2.30
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isolated reactants. The convenience of reporting the reaction
energy considering the first aquation process as a bimolecular
reaction is discussed elsewhere.5m In our work, BSSE was
not considered.

Results and Discussion

Tables 2-6 collect representative structural parameters for
Cisplatin, its monoaqua-substituted derivative, and the
Cisplatin-9metG adduct as determined with each theoretical
level using different combinations of functionals and ECP/
basis sets (LANL2DZ, SBK and Troullier-Martins schemes).
Since the aim of this work is comparing DFT implementa-
tions using analytical and numerical basis sets as respectively
present in G03 and SIESTA, taking as reference the available
experimental structural data,17–19 differences between pre-
dicted and observed values (labeled as ∆c-o) have been
calculated and reported for all bonds and angles involving
heavy-atoms. In addition, the overall mean percentage of all
bond differences (OMPBD) and the overall mean percentage
of all structural parameters differences (OMPGD) were
calculated using ∆c-o as follows:

OMPBD) [ ∑
i)bond

n |∆c-o|i × 100

(BDobsvd)i ]1
n

(1)

OMPGD) [ ∑
i)bond

n |∆c-o|i × 100

(BDobsvd)i
+ ∑

j)angle

m |∆c-o|j × 100

(BAobsvd)j ]
( 1
n+m) (2)

BDobsvd and BAobsvd being respectively the observed experi-
mental values of each of the n bond distances taken into
account and each of the m bond angles considered in
calculating OMPGD.

To test the performance of numerical basis set and the
Troullier-Martins pseudopotential scheme against energetic
parameters, reaction energy for the first aquation process of
Cisplatin was calculated from the isolated species energetics
and reported in Table 7. Since there is no experimental data
for this reaction in gas phase, our calculations are compared
to other theoretical determinations.5b,c

Geometry of Cisplatin. The first aspect to be taken into
account is that experimental data of reference for Cisplatin
come from X-ray diffraction studies in the solid state
obtained by Milburn et al.17 Due to packing interactions,
distortions on the structural parameter from the gas phase
are likely to be present in the solid state, hence no perfect
agreement with X-ray crystallographic results are expected,
even for the best theoretical method employed to determine
the structure of isolated Cisplatin. Actually, the intermo-
lecular interaction between two adjacent Cisplatin molecules
present in the crystal indicated the formation of two hydrogen
bonds from each nitrogen of one Cisplatin molecule, both
bonds being to the same chloride atom in the next molecule
along the c-axis of the unit cell (donor–acceptor H bond
distance of 3.3 Å).17 This H bond interaction leaves both
hydrogen atoms lying in the plane of the molecule in the
N-Pt-N quadrant and produces a loss of symmetry given
a quasi C2V conformation different than that calculated as an
isolated species minimum. As a consequence, the two

Table 2. Calculated Cisplatin Bond Lengths (Å) and Angles (deg) at Several Levels of Theory, OMPBDs, and OMPGDs
with Respect to Experimental Values and Best Available Theoretical Data

Pt-Cl Pt-N N-Pt-N N-Pt-Cl Cl-Pt-Cl OMPBD OMPGD

Pseudopotential and Basis Set Used for Pt: LANL2/LANL2DZ
PBE1PBE 2.322 (-0.008) 2.086 (0.076) 98.2 (11.2) 83.3 (-7.0) 95.1 (3.2)a 2.1 [2.2]e 5.6 [4.2]
mPW1PW91 2.324 (-0.006) 2.089 (0.079) 98.1 (11.1) 83.4 (-6.9) 95.1 (3.2) 2.1 [2.2] 5.6 [4.2]
B3LYP 2.349 (0.019) 2.110 (0.100) 98.2 (11.2) 83.3 (-7.0) 95.3 (3.4) 2.9 [2.2] 6.0 [4.3]
B3PW91 2.330 (0.000) 2.090 (0.080) 98.3 (11.3) 83.3 (-7.0) 95.1 (3.2) 2.0 [2.1] 5.6 [4.2]
B3P86 2.325 (-0.005) 2.090 (0.080) 98.4 (11.4) 83.2 (-7.1) 95.2 (3.3) 2.1 [2.2] 5.8 [4.3]
mp2(full) 2.345 (0.015) 2.093 (0.083) 97.2 (10.2) 83.8 (-6.5) 95.1 (3.2) 2.4 [1.9] 5.4 [3.8]
MP2(FC)b 2.347 (0.017) 2.083 (0.073) 97.4 (10.4) 83.9 (-6.4) 94.8 (2.9) 2.2 [1.6] 5.3 [3.6]
MP3(FC)b 2.358 (0.028) 2.098 (0.088) 96.9 (9.9) 83.9 (-6.4) 95.3 (3.4) 2.8 [1.7] 5.5 [3.7]
MP4(FC)b 2.358 (0.028) 2.095 (0.085) 97.1 (10.1) 84.0 (-6.3) 95.0 (3.1) 2.7 [1.6] 5.5 [3.6]
HF 2.363 (0.033) 2.124 (0.114) 95.3 (8.3) 84.5 (-5.8) 95.7 (3.8) 3.5 [2.4] 5.4 [3.5]

Pseudopotential and Basis Set Used for Pt: SBK/CEP-31G
PBE1PBE 2.308 (-0.022) 2.093 (0.083) 98.0 (11.0) 83.5 (-6.8) 95.0 (3.1) 2.5 [2.7] 5.7 [4.3]
mPW1PW91 2.310 (-0.020) 2.095 (0.085) 98.0 (11.0) 83.5 (-6.8) 95.0 (3.1) 2.5 [2.7] 5.7 [4.3]
B3LYP 2.337 (0.007) 2.123 (0.113) 98.1 (11.1) 83.4 (-6.9) 95.2 (3.3) 3.0 [2.8] 6.0 [4.5]
B3PW91 2.316 (-0.014) 2.101 (0.091) 98.1 (11.1) 83.4 (-6.9) 95.0 (3.1) 2.6 [2.7] 5.8 [4.4]
B3P86 2.312 (-0.018) 2.095 (0.085) 98.3 (11.3) 83.3 (-7.0) 95.1 (3.2) 2.5 [2.6] 5.8 [4.4]
mp2(full) 2.307 (-0.023) 2.098 (0.088) 96.8 (9.8) 84.2 (-6.1) 94.7 (2.8) 2.7 [2.8] 5.3 [3.9]
MP2(FC)b 2.312 (-0.018) 2.090 (0.080) 97.1 (10.1) 84.2 (-6.1) 94.6 (2.7) 2.4 [2.5] 5.2 [3.8]
MP3(FC)b 2.327 (-0.003) 2.106 (0.096) 96.2 (9.2) 84.3 (-6.0) 95.2 (3.3) 2.5 [2.6] 5.1 [3.7]
MP4(FC)b 2.326 (-0.004) 2.105 (0.095) 96.7 (9.7) 84.2 (-6.1) 94.8 (2.9) 2.4 [2.6] 5.2 [3.8]
HFb 2.348 (0.018) 2.140 (0.130) 95.0 (8.0) 84.7 (-5.6) 95.7 (3.8) 3.6 [3.0] 5.4 [3.6]

Pseudopotential and Basis Set Used for Pt: Troullier-Martins/D�
PBESIESTA 2.331 (0.001) 2.096 (0.086) 100.3 (13.3) 81.6 (-8.7) 96.5 (4.6) 2.2 [2.2] 6.8 [5.4]

Experimental Values (Mean and Range)c

exp 2.330 2.010 87.0 90.3 91.9 0.0 0.0
exp 2.328–2.333 1.950–2.050 85.5–88.5 88.5–92.0 91.3–92.2

Car–Parrinello Molecular Dynamics at Room Temperatured

BLYP 2.36 2.03 89 88 94 [0.0] [0.0]

a Values in parentheses correspond to the difference between the calculated and the mean experimental value (∆c-o) for each structural
parameter. b Taken from ref 3d. c Taken from ref 17. d Calculated average values taken from ref 4d. e Values in square brackets correspond
to OMPBD and OMPGD calculated with respect to the CPMD-BLYP simulation.
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N-H · · ·Cl intramolecular hydrogen bonds that appear in the
gas phase (see dashed lines in Figure 1A) are substituted by
two intermolecular hydrogen bonds in the crystal structure
forcing the closure of the N-Pt-N angle.

For completeness and uniformity with the structural
analysis of the monoaquo complex (see Table 3 and the
corresponding discussion), our results for Cisplatin are also
compared with the DFT Car–Parrinello molecular dynamics
(CPMD-BLYP) simulation at room temperature, using
periodic boundary conditions and 35 explicit water molecules
to include solvent effects.4d The corresponding OMPBDs and
OMPGDs values are reported in square brackets in Table 2.

Comparative analysis of the calculated Pt-Cl bond lengths
in Cisplatin collected in Table 2 shows that whereas
LanL2DZ ECP calculations essentially tend to overestimate
this parameter with respect to the corresponding mean
experimental valuesscoming from different Cisplatin mol-
ecules present in the triclinic X-ray unit cell17susing SBK
means to underestimate it. Concerning DFT functionals and
basis sets, the best results are obtained with PBE as
implemented in SIESTA, as well as with the hybrid
functional B3PW91 using LanL2DZ ECP for Pt. Regarding
the calculated Pt-N bonds, all the methods exhibit the same
trend, overestimating these distances, being the best results
obtained at the MP2(FC)/LanL2DZ level, followed by both
PBE1PBE/LanL2DZ and mPW1PW91/LanL2DZ, which are
slightly more accurate than PBESIESTA, but still showing a
very good performance comparable to that achieved at the
MP4(FC) level using LanL2DZ ECP. Thus, in general terms,
the LanL2DZ pseudopotential produces better results than
SBK in predicting bond lengths, as reflected by the corre-
sponding OMPBD values collected in Table 1 (B3PW91 )
2.0, PBE1PBE ) 2.1, mPW1PW91 ) 2.1, B3P86 ) 2.1,
and MP2(FC) ) 2.2). In comparing results obtained with
LanL2DZ and GTOs in G03 with those obtained using a

numerical basis set in SIESTA, it is shown that PBESIESTA

achieves a performance similar to MP2(FC) and with the
DFT calculations already mentioned, but with a significantly
lower computational effort. It is worthy to notice that the
largest OMPBDs are obtained at the HF level indicating the
importance of the inclusion of a dynamic electron correlation
in the calculation of bond lengths, a fact previously reported
for the Pt-Cl bond.3d

Considering now N-Pt-N and Cl-Pt-Cl bond angles,
it can be seen that compared with experiment they are
systematically overestimatedsleading thus to underestima-
tion of the N-Pt-Cl anglesby all methods disregarding any
variation on the corresponding ECPs and basis set. None of
the calculated bond angles fell within the experimental range.
OMPGD and OMPBD values reported in Table 2 clearly
show that the general performance is lower in quality when
modeling angles respect to prediction of bond distances, a
fact already noticed in every methodological comparison
previously reported.3d,e,5e The Cl-Pt-Cl angle is somehow
better modeled than N-Pt-N, with deviations from experi-
ment ranging from 2.7° to 4.6°. SBK ECP gives a global
better performance than LanL2DZ. In all the cases, the lack
of general agreement between the observed angles and the
calculated ones in gas phase are due to the already mentioned
effects of packing a problem that is attenuated when
comparing the data to the best available calculated structures
in aqueous solution. Thus, OMPGD is only a qualitative tool
at the moment of determining the global structure obtained
with the different methods showing in all the cases a
difference ranging from 5 to 7% (or 3.5–5.4%, depending
on the nature of the data considered as a reference).

OMPBDs and OMPGDs calculated with respect to CPMD-
BLYP data are close (and slightly smaller, in general terms,
see Table 2) to those obtained taking X-ray crystallographic
results as reference, reflecting the proximity of the structural

Table 3. Calculated Cisplatin Monoaquo Bond Lengths (Å) and Angles (deg) at Several Levels of Theory, OMPBDs, and
OMPGDs with Respect to Best Available Theoretical Data

Pt-Cl Pt-Na Pt-O N-Pt-N N-Pt-Cl N-Pt-O O-Pt-Cl OMPBD OMPGD

Pseudopotential and Basis Set Used for Pt: LANL2/LANL2DZ
PBE1PBE 2.30 (-0.03) 2.03 (0.00) 2.10 (0.00) 97 (6) 87 (-1) 87 (-7) 89 (3)b 0.4 2.9
mPW1PW91 2.30 (-0.03) 2.03 (0.00) 2.11 (0.01) 97 (6) 87 (-1) 87 (-7) 89 (3) 0.6 2.9
B3LYP 2.33 (0.00) 2.05 (0.02) 2.13 (0.03) 97 (6) 87 (-1) 87 (-7) 89 (3) 0.8 3.0
B3PW91 2.31 (-0.02) 2.03 (0.00) 2.11 (0.01) 97 (6) 88 (0) 87 (-7) 89 (3) 0.4 2.7
B3P86 2.30 (-0.03) 2.03 (0.00) 2.10 (0.00) 97 (6) 87 (-1) 87 (-7) 89 (3) 0.4 2.9
mp2(full) 2.32 (-0.01) 2.04 (0.01) 2.11 (0.01) 96 (5) 88 (0) 87 (-7) 89 (3) 0.5 2.5
MP2(FC) 2.32 (-0.01) 2.04 (0.01) 2.11 (0.01) 96 (5) 88 (0) 87 (-7) 89 (3) 0.5 2.5
HF 2.33 (0.00) 2.07 (0.04) 2.12 (0.02) 95 (4) 88 (0) 88 (-6) 89 (3) 1.0 2.5

Pseudopotential and Basis Set Used for Pt: SBK/CEP-31G
PBE1PBE 2.28 (-0.05) 2.03 (0.00) 2.10 (0.00) 96 (5) 87 (-1) 87 (-7) 89 (3) 0.7 2.8
mPW1PW91 2.29 (-0.04) 2.04 (0.01) 2.10 (0.00) 96 (5) 87 (-1) 87 (-7) 89 (3) 0.7 2.8
B3LYP 2.31 (-0.02) 2.06 (0.03) 2.13 (0.03) 96 (5) 87 (-1) 87 (-7) 89 (3) 1.3 3.0
B3PW91 2.29 (-0.04) 2.04 (0.01) 2.11 (0.01) 96 (5) 87 (-1) 87 (-7) 89 (3) 0.9 2.9
B3P86 2.29 (-0.04) 2.04 (0.01) 2.10 (0.00) 97 (6) 87 (-1) 87 (-7) 89 (3) 0.7 3.0
mp2(full) 2.29 (-0.04) 2.04 (0.01) 2.10 (0.00) 96 (5) 88 (0) 87 (-7) 90 (4) 0.7 2.8
MP2(FC) 2.29 (-0.04) 2.04 (0.01) 2.10 (0.00) 96 (5) 88 (0) 87 (-7) 90 (4) 0.7 2.8
HF 2.32 (-0.01) 2.08 (0.05) 2.13 (0.03) 95 (4) 89 (1) 88 (-6) 89 (3) 1.4 2.8

Pseudopotential and Basis Set Used for Pt: Troullier-Martins/D�
PBESIESTA 2.31 (-0.02) 2.03 (0.00) 2.12 (0.02) 97 (6) 86 (-2) 88 (-6) 89 (3) 0.6 2.9

Car–Parrinello Molecular Dynamics at Room Temperaturec

BLYP 2.33 2.03 2.10 91 88 94 86 0.0 0.0

a Amino group trans to water. b Values in parentheses correspond to the difference calculated respect to the corresponding structural
parameter extracted form the best theoretical calculation known (∆c-o). c Calculated average values taken from ref 4d.
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parameters obtained by optimization of the isolated species
at 0° K to the data coming from the average over aqueous
solution dynamics performed at room temperature. The
principal trends already discussed are sustained in considering
these values. Nevertheless, two points emerge from the
analysis: (a) Möller–Plesset levels of theory become the best
in predicting bond lengths for solution structures; (b) the best
OMPGDs are now obtained at the HF level, probably by
compensation of errors leading to a better characterization
of the angles between NH3 groups.

Geometry of Cisplatin Monoaqua-Substituted Deri-
vative. As far as we know, there is no experimental
characterization of the molecular structure of the monoaquo
complex derivated from Cisplatin. The cationic complex
[Pt(H2O)4]2+ is the most related chemical species for which
structural data obtained from EXAFS are available.5a The
mean Pt-O bond distance reported for the tetra-aquo
compound in C2V conformation is 2.01 Å,19 a value that can
be thought as a semiquantitative reference for the Pt-O bond
in the monoaquo species. To achieve the comparison of all
bond lengths and angles that involve the heavy atoms in the
monoaquo complex we have taken as a reference the values
from a CPMD-BLYP simulation at room temperature, using
periodic boundary conditions and 35 explicit water mol-
ecules, as previously done for Cisplatin.4d So we are now
comparing the structural parameters calculated for isolated
species with the simulated ones in aqueous solution, and thus,
OMPBDs and OMPGDs collected in Table 3 were calculated
using the results coming from the DFT Car–Parrinello
molecular dynamics as the unique reference.

All three calculated bond lengths scarcely deviate from
the reference values, showing for all methods a deviation
that lies in the hundredths of angstroms. Results obtained
with LanL2DZ are slightly better that the corresponding SBK
ECP ones. For bond length parameters, PBESIESTA still shows
a very good performance, comparable to that of mPW1PW91/
LanL2DZ, with an overall agreement to the reference data
(OMPBD ) 0.6) placed in between the lowest quality set
of results (obtained using analytical GTOs and the ECP of
SBK, with OMPBDs in the 0.7–1.4 range) and the best ones
achieved at the DFT/LanL2DZ levels (the lowest OMPBD
value of 0.4 was obtained using PBE1PBE, B3PW91, and
B3P86 functionals). Again, the small ranges spanned by all
methodologies indicate that bond lengths from isolated
species are fairly close to those from aqueous solution
simulations.

In all cases, there is a better agreement in the two
calculated bond angles involving a Cl- ion (N-Pt-Cl and
O-Pt-Cl). All methods overestimate the N-Pt-N angle,
whereas the N-Pt-O angle is always underestimated a few
degrees. OMPGD values ranged for all DFT functionals from
2.7 to 3.0 (being the best of them B3PW91/LanL2DZ to be
compared to the best performance of 2.5 obtained at the MP2/
LanL2DZ level and to a PBESIESTA performance of 2.9)
showing again the excellent agreement between isolated
species optimization and solvated CPMD-BLYP.

Geometry of Cisplatin-9metG Adducts. Also in this
case, experimental values available for comparison come
from X-ray data. As shown in Figure 2, our structural data

obtained by optimization of isolated species under gas phase
conditions are compared to data from three monofunctional
adducts formed between Cisplatin (or some aquo complex
derivative) and a double stranded B-DNA dodecamer of
sequence d{5′-CpGpCpG*pApApTpTpCpG*pCpG-3′}{5′-
CpG*pCpGpApApTpTpCpGpCpG-3′}, where the asterisk
marks the sites of covalent binding (first step of platination).18

The first inspection of the crystal structure shows the
formation of three adducts in different neighbor contexts of
nucleobases. Two bonds are of the type 5′-CG*C-3′, and
one is of the type 5′-CG*A-3′. The binding of Cisplatin to
guanine residues in different DNA sequences clearly affects,
in terms of structural parameters, the formation of the
Cisplatin-guanine adducts.7 As a counterpart, the structural
damage produced by platination to DNA also depends upon
the specific nucleobase sequence.7 Consistently, these aspects
must be kept in mind when analyzing the experimental range
and mean values reported in Table 6.

A second inspection of the X-ray structure demonstrates
that the authors were not capable of determining the chemical
nature of the ligands of the platinum complex (labeled
L1-L3 in Figure 2).18 It has been hypothesized that the L2
ligand could be a water molecule suggesting that the diaqua-
substituted derivative was the platination agent, before
crystallization was achieved.18 Nevertheless, the knowledge
of the conditions of crystallization (solution of 2-methyl-
2,4-pentanediol a 4 °C)18 and of further studies leading to
determine the equilibrium relation in aqueous solution of
Cisplatin, monoaquo, monohydroxo, diaquo, and dihydroxo
complexes at 37 °C and different concentrations of chloride20

allowed us to reassign the three unknown ligands as follow:
L1 ) Cl- (labeled as X in Tables 4-6); L2 ) N(1); and L3
) N(2).

Pt-NH3 bond lengths calculated with all methods are in
very good agreement with the experimental values taken as
reference. While Pt-N(2) is always a little bit underesti-
mated, Pt-N(1) is always overestimated by a few hundredths
of angstroms. Pt-N7 bond lengths are not so well-modeled,
and none of the calculated values fell within the experimental
range, being for all methods shorter than expected. Calculated

Figure 2. Schematic representation of the crystal structure
(resolution: 2.6 Å) of the primary mode of binding of Cisplatin
to the B-DNA dodecamer by Wing18 et al. The PDB file
(DDL017) was obtained from the Nucleic Acid Database
(http://ndbserver.rutgers.edu/). The amplified sketch shows
one of the formed adducts in which Cisplatin ligands are
labeled as in ref 18.
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OMPBDs ranging from 3.5 to 4.4 showed good performance
of all methods, HF (3.5/3.8) and B3LYP (4.0) being the most
accurate ones, regardless the ECP used. PBESIESTA (OMPBD
) 4.3) also gives a good overall result, comparable to the
one obtained with PBE1PBE and the other hybrid functionals
using analytical basis sets. MP2 (full and FC) with the ECP
of SBK gave the poorest results, particularly in the descrip-
tion of the Pt-N7 bond.

A measure of the strength of the hydrogen bond (Hb)
formed between N(1) and the O6 carbonyl group of guanine
could not be obtained from the X-ray experiment since
hydrogen atoms were not detected. The formation of this

Hb is thought to be essential for the stabilization of the first
adduct formed between Cisplatin and DNA.6q A recent work
by van der Wijst et al., in which the performance of various
density functionals in describing the hydrogen bonds in DNA
base pairs was analyzed, shows that GGA functionals BP86
and PW91 gives the best results compared to X-ray values,
while B3LYP tends to underestimate the hydrogen bond
strength compared to experiment.21 In our work, B3P86 gave
the strongest Hb (shorter bond distance and better alignment
among the three atoms involved), and if this is taken as a
reference, PBESIESTA and PBE1PBE/LanL2DZ gave the
following better results.

For the calculated angles, all methods give the same trends:
the X-Pt-N(2) angle is systematically underestimated while
the N(2)-Pt-N(1) angle is always overestimated by more
than 10° and never fell within the experimental range. The
X-Pt-N7 and N(1)-Pt-N7 angles are better modeled,
particularly the first one, giving additional support to the
reassignment of L2 as a chloride. The lowest OMPGDs in a
range of 12.3–15.1 are obtained by B3LYP and B3P86
regardless of the ECP used (values of 12.3 and 12.4/12.5,
respectively). For the structural characterization of the
Cisplatin-9metG adduct, LanL2DZ and SBK offer the same
level of accuracy. PBESIESTA, again, gives a very good result,
with an accuracy comparable to PBE1PBE and the others
functionals (OMPGD ) 12.9). If global differences are
analyzed, MP2 shows the largest deviation with respect to
the experimental information. This is an outcome of a worse
representation of the dihedral angle labeled R (Figure 1B),
which is greatly determined by the Hb formed with the
carbonyl group of guanine. A good modeling of this dihedral,
that represents the angle formed between the plane of the
platinum complex and the plane of the nucleobase, is crucial
to estimate the stability of the adduct and the relative
orientation toward the formation of the bifunctional complex
(all DFT functionals and HF gave a deviation of ∼10 Å from
the experimental mean value).

Energetics of the First Aquation Process of Cispla-
tin. A good description of the reaction energy and activation
energy is decisive to understand the thermodynamic and
kinetic behaviors of the reactions in which Cisplatin and its
derivatives are involved. As far as we know, the best
thermodynamic result obtained for the first aquation process
of Cisplatin was achieved using a G3 modified strategy.5c

The G3 modified treatment (which includes a term for
describing spin–orbit coupling, uses the MWB-60 pseudo-
potential for the Pt and CCSD(T) instead of the original
QCISD(T), replacing the G3Large basis set with the more
common aug-cc-pvtz)5c was used as a reference to check
the performance of our theoretical results when predicting
the reaction energy.

As we can see in Table 7, B3P86/LanL2DZ reported by
Chval and Sip5b gives an extraordinary good result if
compared to G3. If the general accuracy of the methods used
in the energetic characterization is kept in the aquation
reaction of Cisplatin, we can presume that the G3 calculation
does not deviate more than 1.0 kcal/mol and that the GGA
and hybrid functionals accuracy rounds approximately
between 3.5 and 7.5 kcal/mol apart from the probable

Table 6. cis-[Pt(NH3)2Cl(9-met-guanine)]+

StructuresDistances in angstroms; Angles in
degsCalculated with SIESTA at the PBESIESTA Level of
Theory with Troullier-Martins Pseudopotentials,
Deviations, OMPBDs and OMPGDs, and Reference
Experimental Data

Troullier-Martins/D�

PBESIESTA exp (mean) exp (range)

Pt-Xa 2.329
Pt-N(2) 2.066(-0.055)b 2.121 1.999–2.230
Pt-N(1) 2.078(0.023) 2.055 1.814–2.247
Pt-N7 2.031(-0.206) 2.237 2.164–2.315
N(1) · · ·O(Hb) 1.745
Xa-Pt-N(2) 85.2(-14.4) 99.6 95.5–104.7
Xa-Pt-N7 90.2(-5.9) 96.1 79.0–105.6
N(2)-Pt-N(1) 93.6(11.9) 81.7 78.7–85.1
N(1)-Pt-N7 91.0(10.4) 80.6 69.7–102.0
N(1) · · ·O(Hb) 163
R 37 (11) 26 13–44
OMPBD 4.3
OMPGD 12.9

a The nature of this ligand is not clearly defined in the work by
Wing et al.,18 but it can be thought of as a chloride. b For
comparison purposes, difference between the calculated value and
the corresponding mean experimental or observed value (∆c-o)
taken from ref 18 is reported in parenthesis.

Table 7. Calculated Reaction Energy (kcal/mol) for the
First Aquation Process of Cisplatin at the Different Levels
of Theory over Optimized Isolated Species in the Gas
Phase

ECP/basis set employed

level of
theory

LANL2/
LANL2DZ

SBK/
CEP-31G

Troullier-
Martins/D�

PBE1PBE/
PBESIESTA

115 (-5) 116 (-4) 142 (22)a

127 (7)b

mPW1PW91 115 (-5) 116 (-4)
B3LYP 114 (-6) 115 (-5)
B3PW91 115 (-5) 116 (-4)
B3P86 119c (-1) 116 (-4)
MP2(FC) 116c (-4) 116 (-4)
mp2(full) 113 (-7) 115 (-5)
HF 108 (-12) 109 (-11)
G3-type
strategyd

120

a Results obtained from optimized structures using a PAO
energy shift of 20 meV and a grid cutoff of 200 Ry. b Results
obtained from single-point calculations over optimized structures
using a PAO energy shift of 0.5 meV and a grid cutoff of 300 Ry.
c From ref 5b. d For comparison purposes, differences between
our calculated values and the best known theoretical value
(G3-type strategy) taken from ref 5c are reported in parenthesis.
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experimental result. This is exactly the behavior that is
reproduced by the selected DFT methods that use analytical
basis set functions in comparison with G3. In contrast, the
results obtained from optimized species with PBESIESTA using
a PAO energy shift of 20 meV and a grid cutoff of 200 Ry
overestimate the calculated reaction energy by at least 22
kcal/mol leading to a worse result than HF. Nevertheless,
the qualitative reaction profile is still the same in all the cases,
being the first aquation process of Cisplatin in the gas phase
largely endothermic.

However, if the quality of the SIESTA calculation is
improved, the PBESIESTA result deviates in absolute value
only 7 kcal/mol from the G3 strategy, a similar performance
that MP2(full) calculations with the analytical basis functions.
A comparison of PBESIESTA with PBE1PBE as implemented
in G03, lead us to deduce that the Troullier-Martins
pseudopotential and the numerical basis set of SIESTA also
give quantitatively good results in predicting the reaction
energy.

Conclusions

Our results show that SIESTA gives geometrical parameters
of very good to excellent accuracy for the complexes of
platinum considered herein. Particularly good results are
obtained for the geometry of the Cisplatin-9metG adducts,
allowing us to extend the calculations (having the perfor-
mance of SIESTA in mind) to larger and more complex
molecular systems. Energetic results of SIESTA show a
qualitative good agreement with more standard implementa-
tions of DFT methods that use analytical basis set. However,
special care should be exercised in the choice of the cutoff
criteria for the pseudo-atomic orbitals to obtain a good
agreement with analytical basis sets approaches.

For the description of the calculated properties, a com-
parison of PBE1PBE implemented in Gaussian03 and
PBESIESTA allows us to state that the pseudopotential for the
platinum derived with the Troullier-Martins procedure and
the numerical basis set yield similar results to LanL2DZ and
the Pople’s basis sets employed in analytical implementa-
tions. On the basis of the quality of the results obtained for
this type of systems and the computational efficiency of the
numerical scheme, SIESTA results an excellent alternative
as a computational tool for predicting structure and energetics
of platinated systems and their transformations.
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Abstract: Extensive calculations on a large set of free radicals containing atoms of the second
and third row show that the B3LYP/N07D computational model provides remarkably accurate
structural parameters and magnetic tensors at reasonable computational costs. The key of this
success is the optimization of core-valence s functions for hyperfine coupling constants, while
retaining (and even improving) the good performances of the parent 6-31+G(d,p) basis set for
valence properties through reoptimization of polarization and diffuse p functions.

Introduction

Quantum mechanical treatments of interactions between
atomic and molecular systems have provided an invaluable
contribution toward a deeper understanding of the interplay
between different factors in determining structures, binding
energies, and physicochemical properties of noncovalently
bonded complexes.1,2 While very reliable static properties
of small and medium size systems can be safely computed
by state of the art post-Hartree–Fock methods,3,4 the
situation is more involved for large systems in condensed
phases5 and whenever dynamical aspects cannot be
neglected.6 The development of reliable density function-
als (especially hybrid ones),7–10 mixed discrete/continuum
solvent models,11,12 and implementation of linear scaling
computational approaches13 is allowing the reliable study
of large systems of biological and technological rel-
evance.14 However, the problem of basis set superposition
error (BSSE) and of the computation of reliable electric
and magnetic properties by basis sets of nonprohibitive
dimensions remains open.15,16 This is even more important
in the framework of ab initio dynamics17,18 where a huge
number of different structures (and energy gradients) must
be computed to produce a converged trajectory.19,20

Several recent studies have shown that in the framework

of hybrid density functionals and ab initio dynamics, the
smallest basis sets allowing semiquantitative evaluations
without too large errors connected to basis set incomplete-
ness are split valence sets augmented by diffuse functions.21,22

Among those, aug-cc-pVDZ23 and 6–31+G(d,p)24 models
lead to comparable results. From a complementary point
of view, the same level of basis sets allows for the
computation of reasonable electric and magnetic proper-
ties, except for hyperfine coupling constants, which require
specialized functions in the core-valence region.25,26

All these considerations prompted us to optimize a new
polarized split-valence basis set for second- and third-row
atoms, which, adding a reduced number of polarization and
diffuse functions to the 6–31G set, leads to an optimum

* Corresponding author e-mail: baronev@unina.it.
+ Permanent address: Dipartimento di Scienze Farmaceutiche,

Università di Salerno, via Ponte don Melillo, I-84084 Fisciano (Sa),
Italy.

Table 1. Basis Functions To Be Added to 6-31G for
Obtaining the N07D Basis Set for the B3LYP Functionala

s p d d

H 0.750
B 0.035 0.343
C 7.5 0.050 0.820
N 12.6 0.053 1.015
O 15.1 0.065 1.190 0.180
F 18.3 0.083 1.370 0.230
Al 3.1 0.015 0.189
Si 3.6 0.033 0.275
P 5.5 0.035 0.373
S 8.0 0.041 0.479
Cl 8.5 0.048 0.600 0.196

a For He, Li, Be, Na, and Mg atoms N07D is identical to
6-31+G(d,p).
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compromise between reliability and computer time. The
possible use of different basis sets on different atoms requires
basis set balance in order to avoid inaccuracies in the charge
distribution of the molecule. For example, adding diffuse
functions to split-valence basis sets has a significant effect
on the energy even for atoms. Thus, diffuse p functions
should be added consistently on all non-hydrogen atoms. At
the same time, diffuse s functions play a negligible role in
determining molecular properties and have been neglected
for all atoms. The situation is more involved for diffuse d
functions. Although they have a comparatively lower effect
on energies, their role becomes significant for electric
properties of electronegative atoms and for some geometrical
parameters involving multiple bonds.27,28 At the same time
they adversely affect the basis set superposition error in weak
intermolecular interactions. In the present context, diffuse d

functions have been optimized for all non-hydrogen atoms,
but they are systematically used only for some electroneg-
ative atoms.

As mentioned above, in the context of magnetic
properties, isotropic hyperfine couplings play a peculiar
role since their evaluation is quite straightforward, but
reliable results can be obtained only by proper inclusion
of electron correlation and improved description of core-
valence regions.29–31

Methods based on the unrestricted Kohn–Sham (UKS)
approach to density functional theory (DFT) have revolution-
ized also this field in the past few years, since some
functionals (especially hybrid ones) provide, at least for
systems containing only second- and third-row atoms,
remarkable results at reasonable costs.32–37 The basis set issue
remains, however, significant.32 Our experience in developing
purposely tailored basis sets indicates that addition of a single
core-valence s function with an optimized exponent around
10 performs remarkably well.38,39 The price to be paid for
this effective approach is that the basis function must be
optimized for each atom and for each different density
functional. This is quite disappointing since the remaining
part of the basis set can be transferred without modifications
among different hybrid density functionals. We have decided,
however, that efficiency merits this slight additional effort,
and we have optimized semicore s functions for several
functionals.40 In the present paper, we will be concerned with
the B3LYP functional41 in view of its widespread use and
availability in most computational codes. The functions added
to the 6–31G set for all the atoms of the second and third
row are shown in Table 1.

The N07D basis set has been already used with success
in some structural and dynamic studies both in gas phase

Table 2. Comparison of Parameters for HF, HCl, H2O and TEMPO Calculated by Different Basis Sets

H2O HF HCl TEMPO

OH (Å) HOH (degrees) µ (Debye) HF (Å) µ (Debye) HCl (Å) µ (Debye) NO (Å) µ (Debye)

6–31G(d) 0.968 103.7 2.094 0.934 1.860 1.289 1.468 1.286 2.894
aug-cc-pVDZ 0.965 104.7 1.854 0.926 1.803 1.295 1.154 1.283 3.122
6–311+G(2d,2p) 0.961 105.1 1.960 0.922 1.882 1.280 1.174 1.281 3.149
N07D 0.964 104.5 1.846 0.925 1.810 1.291 1.181 1.281 3.162
N07Da 0.963 105.3 2.114 0.925 1.986 1.291 1.365 1.281 3.215
exp 0.958b 104.5c 1.855d 0.920d 1.826e 1.275f 1.093f

a Without diffuse functions on O, F, and Cl atoms. b Reference 52. c Reference 53. d Reference 54. e Reference 55. f Reference 56.

Table 3. Theoretical and Experimental Hyperfine Coupling Constants (in Gauss) of B, Be, and Cl Atomsb

structure atom 6–31G(d) EPR-II EPR-III N07D expa

BO• B 376.0 399.3 384.7 375.9 365.7
BB•• B 9.4 4.7 5.5 8.1 5.4
BS• B 289.6 299.6 292.0
BH2

• B 140.9 133.3 129.1 140.2 127.7
BH2O• B -26.7 -28.4 -26.7 -28.0 30.0
BeH• Be -74.2 -70.4 71.1
BeOH• Be -106.0 -100.6 94.2
BeF• Be -111.4 -107.4 104.9
Cl2–• 2Cl 27.1 27.7 38.9
SiCl3• 3Cl 9.2 10.7 12.4
SiCl2CH3

• 2Cl -7.5 -8.6 10.5
PCl2• 2Cl -2.3 -2.5 0.4

a Data for BO, BB, BS, BH2, BH2O, BeH, BeOH, BeF, and Cl2- are from ref 44; data for SiCl3, SiCl2CH3, and PCl2 are from ref 45. b All
the theoretical values have been obtained in the present work.

Figure 1. Structure of TEMPO (2,2,6,6-tetramethylpiperidine-
N-oxyl) radical.
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Figure 2. Structures of the radicals studied.
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and in solution (e.g., refs 42 and 43, where it was referred
to as N06). In the next section we give just a flavor of its

broad performances, whereas the body of the paper is devoted
to hyperfine coupling constants, which are one of the main

Table 4. Theoretical and Experimental Hyperfine Coupling Constants (Gauss) of Hydrogen Nuclei of the Radicals Studiedb

6–31G(d) EPR-II EPR-III N07D expa

1 H -18.2 -17.8 -17.1 -17.0 20.6
4 2H -17.1 -16.8 -13.8 -14.2 16.0
5 H 21.8 21.9 21.1 21.8 18.0
8 3H -25.2 -23.8 -23.2 -23.0 25.0
9 2H -18.3 -17.8 -17.6 -17.4 21.1
10 H -23.1 -24.5 -25.3 -22.1 22.2
12 H -78.8 -83.4 -83.0 -79.4 83.2
13 2H -121.5 -128.2 -128.7 -120.0 132.7
14 Hcis 59.8 63.8 63.8 59.5 68.5
14 Htrans 36.6 40.2 40.2 36.0 34.2
14 H(CH) 14.0 17.1 17.5 13.9 13.3
15 2Hcis -15.8 -14.9 -14.5 -14.3 13.5
15 2Htrans -16.5 -15.7 -15.4 -15.0 14.8
15 H(CH) 4.9 4.7 4.5 4.4 4.2
18 H(orto) -6.0 -5.8 -5.6 -5.9 5.2
18 H(meta) 2.6 2.5 2.4 2.5 1.8
18 H(para) -6.8 -6.6 -6.5 -6.7 6.2
18 H(CH2) -18.3 -17.4 -16.8 -17.6 16.3
125 H -24.2 -24.0 -23.7 -23.4 25.5
127 H -24.9 -25.6 -25.3 -24.7 26.1
130 2H -13.6 0.0 0.0 -13.8 11.8
202 4H -2.0 -2.0 -1.9 -2.0 4.0
203 2H -5.1 -4.9 -4.9 -5.1 2.4
203 2H -1.2 -1.2 -1.2 -1.2 0.6
204 2H -7.3 -6.8 -6.7 -7.1 5.6
204 2H -2.1 -2.0 -2.0 -2.1 1.4
205 H -1.1 -1.1 -1.1 -1.1 2.1
205 H -3.1 -2.9 -2.9 -3.0 4.2
206 2H -0.1 -0.1 -0.1 -0.1 0.3

a Experimental data for 1, 4, 5, 8–10, 12–15, and 18 are from ref 44; for 203–207 are from ref 55. b All the theoretical values have been
obtained in the present work.

Table 5. Data Analysis for Hydrogen Nucleia

6–31G(d) EPR-II EPR-III NO7D exp

Hydrogen: N ) 29
MAD 2.1 1.8 1.9 1.8
max absolute

error
11.3 6.0 6.0 9.0

average E% 25.3% 25.4% 25.4% 25.9%
max E% 113.1% 108.4% 104.6% 113.9%
R2 0.9946 0.9938 0.9934 0.9943
intercept 1.4936 0.8670 0.5675 1.0527
slope 0.9097 0.9666 0.9691 0.9051
max 121.5 128.2 128.7 120.0 132.7
min 0.1 0.1 0.1 0.1 1.8

a MAD (mean absolute deviation in Gauss) ) Σ|acalc-aexp|/N; E% (percent error) ) acalc - aexp/aexp.

Table 6. Theoretical and Experimental Hyperfine Coupling Constants (Gauss) of Carbon Nuclei

structure carbon (13C) 6–31G(d)a EPR-IIIa TZVPa cc-pVQZa N07Db expa

1 C 16.8 19.0 14.8 9.0 15.5 16.8
2 C 183.9 207.7 214.6 201.6 200.9 209.8
3 C 495.3 569.3 587.8 566.5 555.3 561.3
4 C 33.0 29.4 20.7 16.0 27.3 21.0
5 C 348.2 378.7 390.7 374.3 371.3 362.0
5 C(H) 72.9 81.2 82.9 83.5 78.9 76.0
6 C 16.7 14.2 12.0 8.1 13.3 15.7
6 C(O) -2.7 -7.1 -8.5 -8.1 -6.5 10.7
7 C 152.2 138.5 142.7 136.8 137.1 134.7
8 C 44.4 28.6 27.0 19.9 28.7 27.0
9 C 62.3 56.4 50.9 40.0 56.3 54.8
10 C 152.8 143.4 146.8 137.6 145.4 148.8
11 C 258.9 264.5 274.0 261.3 266.9 271.6
12 C -23.6 -24.5 -25.7 -24.4 -24.4 28.9
13 C -30.1 -33.5 -35.1 -33.2 -33.2 38.9
14 C 121.9 107.7 109.6 101.5 109.5 107.6
14 CH2 -7.0 -4.9 -5.3 -4.0 -4.8 8.6
15 CH -17.5 -16.0 -16.3 -14.9 -15.9 17.2
15 CH2 28.2 18.3 17.0 13.2 18.6 21.9
16 CH 108.8 93.6 95.5 87.7 95.5 95.9
17 CN -8.3 -9.2 -9.7 -8.9 -9.1 9.5
18 CH2 32.0 20.4 19.0 15.1 21.0 24.5
18 C1(3) -14.4 -13.7 -14.1 -13.2 -13.6 14.5

a From ref 44. b This work.
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targets of the present development. In this context, a recent
systematic study by Hermosilla et al.44–46 allows for the
comparision of the performances of the B3LYP functional
for a large set of hyperfine coupling constants employing
several basis sets including 6–31G(d),24 EPR-II,38 EPR-III,39

TZVP,47 and cc-pVQZ.48 Here we will show that much
improved results are consistently obtained by the new N07D
basis set with the same functional. As an aside, we have
carefully selected a quite large set of experimental data,

which represents, in our opinion, a useful benchmark for
functional and/or basis set validation.

Computational Details

All the calculations were carried out by the Gaussian03
package49 using the B3LYP hybrid density functional41 with
the N07D basis set. As mentioned in the Introduction, this
basis set was obtained adding to a double-� description of

Table 7. Theoretical and Experimental Hyperfine Coupling Constants (Gauss) of Nitrogen Nuclei

structure Nitrogen (14N) 6–31G(d)a EPR-IIIa TZVPa N07Db expa structure Nitrogen (14N) 6–31G(d)a EPR-IIIa TZVPa N07Db expa

12 N 10.0 8.2 6.2 11.0 9.2 69 2N 12.0 10.1 9.3 11.7 13.9
19 N 4.8 3.6 2.7 4.8 3.5 70 2N 12.4 10.8 10.0 12.3 13.3
20 N 11.9 10.1 7.8 12.7 10.0 71 2N 16.6 17.1 17.0 17.4 17.0
21 N -15.2 -12.5 -10.6 -15.7 14.8 72 2N 11.7 10.9 10.1 12.1 14.7
22 N 14.8 12.1 10.4 15.2 14.3 73 2N 29.8 30.8 30.8 31.3 35.9
23 N 15.0 12.5 10.7 15.4 14.3 74 2N 29.9 31.8 31.9 31.1 38.7
24 N 13.0 10.7 8.5 13.7 12.5 75 2N anion 8.1 6.6 5.8 8.0 7.8
25 N 14.8 11.8 9.9 15.3 14.0 75 2N cation 13.9 12.1 11.3 13.2 21.0
26 N 15.4 12.4 10.6 15.7 14.3 76 2N anion 8.6 6.7 6.2 7.6 8.0
27 N -18.7 -15.0 -13.3 -17.9 19.6 76 2N cation 12.6 10.9 10.2 11.9 20.0
28 N 17.3 14.3 12.8 16.9 19.3 77 2N 8.9 7.2 6.4 8.7 8.2
29 N 18.4 15.6 14.0 18.8 20.7 78 2N 9.5 7.4 7.1 8.1 9.2
30 N 17.1 14.1 12.6 16.5 18.7 79 2N 9.1 6.9 6.5 7.1 8.6
31 N 18.4 15.7 14.2 18.1 20.8 80 2N anion 9.3 7.5 6.8 8.5 8.8
32 N 15.6 13.0 11.7 15.2 18.6 80 2N cation 31.0 33.1 34.0 33.4 31.4
33 N 16.6 13.9 12.6 16.2 18.7 81 N 25.3 23.8 23.2 24.6 25.6
34 N 18.4 15.7 14.4 18.2 20.2 82 N -24.8 -22.6 -22.3 -19.7 26.0
35 N 18.7 16.1 14.7 18.6 20.2 83 N 24.8 22.0 22.0 26.3 25.4
36 N 13.2 11.4 10.3 13.2 20.1 84 N 27.5 26.2 25.6 22.1 26.6
37 N 17.5 14.4 13.0 17.0 19.1 85 N 22.3 20.2 19.7 21.0 23.8
38 N 17.0 14.0 12.5 16.4 20.0 86 N 24.0 21.6 21.3 21.9 27.0
39 N 17.5 15.1 13.8 17.3 19.5 87 N 30.0 30.1 29.8 31.1 33.3
40 N 26.8 26.7 25.8 28.2 30.2 88 N 31.3 31.7 31.5 32.2 32.5
41 N 22.0 21.4 20.5 22.9 25.1 89 N 28.8 29.1 28.7 30.0 30.5
42 N 19.3 18.3 17.4 19.7 21.6 90 N 30.5 30.5 30.3 31.2 32.2
43 N 17.2 14.8 13.5 17.1 19.2 91 N 30.3 29.8 29.6 30.3 30.7
44 N 20.9 19.5 18.3 22.1 25.0 92 N 30.8 31.1 30.9 32.2 31.3
45 N 10.3 8.3 6.3 11.1 10.2 93 N 30.5 31.0 30.7 31.6 31.1
46 N 10.8 8.4 6.5 11.4 9.6 94 N 28.0 28.3 28.0 29.1 31.6
47 N 10.8 8.5 6.6 11.2 11.3 95 N 29.9 29.7 29.5 30.6 32.2
48 N 11.0 8.6 6.7 11.2 10.0 96 N 30.5 30.8 30.6 31.6 30.7
49 N 29.1 32.4 33.7 32.4 28.0 97 N 31.5 31.9 31.8 32.8 32.6
50 N 30.5 33.6 35.0 33.7 28.0 98 N 28.6 29.1 28.7 30.1 30.0
51 N 12.0 10.3 8.5 12.4 8.8 99 N 31.2 31.6 31.5 32.6 31.6
51 N 12.6 11.1 10.9 10.9 11.7 100 N 31.0 30.9 30.8 31.9 32.0
52 N 11.1 8.7 7.3 10.6 9.6 101 N 30.3 31.0 30.7 35.3 32.0
52 N 12.4 11.7 11.0 12.4 11.5 102 N 31.5 32.1 31.9 32.9 31.5
53 N 11.3 8.7 7.5 10.6 9.6 103 N 30.3 31.0 30.8 32.0 30.9
53 N 11.6 10.6 10.0 11.0 11.1 104 N 30.0 30.4 30.1 31.4 31.1
54 N 9.8 8.7 7.5 10.6 10.0 105 N 32.1 33.1 33.0 34.1 32.6
54 N 11.3 8.7 7.9 9.6 11.7 106 N 32.2 32.6 32.5 33.5 32.4
55 N 12.5 10.3 8.9 12.5 11.7 107 N 29.0 29.6 29.2 30.4 31.0
55 N 11.2 9.9 9.4 10.9 10.5 108 N 6.5 6.6 4.7 8.4 10.6
56 N 10.9 8.5 7.2 10.1 10.6 109 N -12.8 -11.1 -10.4 -9.8 11.9
56 N 7.9 7.0 6.1 7.5 10.6 110 N 13.3 11.9 11.1 11.9 13.8
57 2N 12.0 9.8 8.8 10.7 11.6 111 N 15.0 14.0 13.0 15.0 15.2
58 2N 12.2 10.1 9.2 11.5 14.7 112 N 14.8 13.6 12.6 14.8 16.7
59 2N 12.5 10.5 9.6 11.8 13.0 113 N 12.3 11.1 10.0 12.2 15.9
60 N 15.7 13.9 12.7 15.7 16.1 114 N 13.9 12.7 11.8 14.2 16.2
60 N 10.8 8.7 8.1 9.7 9.7 115 N 13.3 11.9 10.9 12.9 14.9
61 2N 12.4 10.4 9.5 12.1 13.4 116 N 10.7 9.4 8.3 11.6 14.4
62 2N 11.1 9.3 8.4 10.8 13.2 117 N 13.6 12.3 11.4 13.8 15.2
63 2N 13.2 11.3 10.5 11.1 15.0 118 N 14.1 12.5 11.5 11.3 14.1
64 2N 12.5 10.6 9.7 11.1 15.0 119 N -17.6 -17.1 -16.7 -21.6 19.8
65 2N 13.2 11.5 10.7 13.1 14.8 120 N 10.1 8.9 7.7 10.7 16.6
66 2N 11.4 9.5 8.6 11.2 12.9 121 N 17.1 16.8 15.9 15.0 16.9
67 2N 16.5 15.5 14.8 17.5 17.6 122 N 14.1 12.9 12.0 14.3 16.2
68 2N 15.0 14.0 13.3 15.7 16.0 123 N 14.2 12.9 12.0 14.3 14.5

a From ref 46. b This work.
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valence orbitals single sets of optimized core-valence s (on
all atoms except H), diffuse p (on all atoms except H),
polarization (on all atoms), and diffuse d (on O, F, Cl atoms)
functions (Table 1). The inner electrons of second- and third-
row atoms were described by the 6G basis set.24

Geometry optimizations and evaluations of harmonic
frequencies have been performed in the gas phase using
analytical gradients and Hessians. Nuclear hyperfine tensors
have been computed following well-defined procedures
described in recent literature.32,50

The hyperfine coupling tensor (AX), which describes the
interaction between the electronic spin density and the
nuclear magnetic momentum of nucleus X, can be split into
three terms: AX ) aX13 + TX + ΛX, where 13 is the 3 × 3
unit matrix. The first term (aX), usually referred to as the
Fermi-contact interaction, is an isotropic contribution, also
known as a hyperfine coupling constant (hcc), and is related

to the spin density at the corresponding nucleus X. The
second contribution (TX) is anisotropic and can be derived
from the classical expression of interacting dipoles. The last
term, ΛX, is due to second-order spin–orbit coupling and can
be determined by methods similar to those used for the
g-tensor.51 In the present case, because of the strong
localization of spin density on the studied atoms and of their
small spin–orbit coupling constants, its contribution can be
safely neglected and will not be discussed in the following.
Of course, upon complete averaging by rotational motions,
only the isotropic part survives.

Results and Discussion

The N07D basis set has been assessed by comparison with
some standard basis sets for a number of properties: a)
geometrical parameters, b) dipole moments, and c) hyperfine
coupling constants. Our results are collected in Tables 2-16

Table 8. Theoretical and Experimental Hyperfine Coupling Constants (Gauss) of Oxygen Nuclei

structure Oxygen (17O) 6–31G(d)a EPR-IIIa TZVPa cc-pVQZa N07db expa

3 O 11.1 9.9 10.2 9.5 10.4 6.6
7 O -11.6 -12.5 -10.5 -8.1 -14.1 15.1
87 O -18.1 -17.9 -14.1 -9.8 -21.2 22.8
123 O -18.0 19.3
124 O -0.2 -4.2 -4.1 -4.6 -3.5 5.0
125 O -18.3 -15.7 -8.6 -1.5 -22.0 18.3
126 2O -15.1 -13.9 -10.3 -5.8 -17.3 19.6
127 O -31.0 -23.1 -16.0 -8.5 -29.3 29.7
128 2O -14.5 -19.4 -16.9 -14.6 -20.3 21.8
129 O -11.2 10.2
188 O -2.2 -1.4 -3.5 3.6
199 O -15.0 15.5

a From ref 44. b This work.

Table 9. Theoretical and Experimental Hyperfine Coupling Constants (Gauss) of Fluorine Nuclei

structure Fluorine (19F) 6–31G(d)a EPR-IIIa TZVPa cc-pVQZa N07Db expa

9 F -73.2 -52.2 -51.3 -44.7 -61.3 64.3
10 2F -71.8 -77.2 -72.9 -62.4 -79.0 84.2
11 3F 133.9 138.3 133.4 125.6 134.5 142.4
130 F 71.1 92.0 84.8 91.4 86.2 81.7
131 F 47.0 31.0 29.5 19.6 31.5 32.6
134 2Feq 59.8 52.7 51.8 50.7 51.0 60.0
135 F -14.1 -11.2 -12.4 -10.7 -12.6 8.0
136 4Feq 211.5 187.0 182.2 172.7 186.1 206.6
200 F 21.9 24.7 25.8
201 F1 -6.2 -6.7 4.8
201 F2,6 21.4 25.8 25.8
201 F3,5 22.8 24.2 25.8
202 F 15.9 17.7 16.2
203 F1,4 18.8 20.7 19.5
203 F2,3 4.0 4.5 6.5
204 F1,4 6.4 7.8 6.1
204 F2,3 2.7 2.7 2.1
205 F1 13.6 15.1 16.1
205 F3 6.0 6.9 7.1
205 F4 17.3 19.3 16.1
205 F5 17.9 19.8 16.8
205 F8 14.1 16.1 16.1
206 F1,5 15.1 16.7 17.9
206 F3,7 8.7 9.8 10.3
206 F4,8 15.5 17.3 17.9
207 F1,4,5,8 16.4 18.2 19.0
207 F2,3,6,7 3.3 3.8 4.8
208 F1,4 4.2 4.8 4.5
208 F2,3 2.5 2.5 2.3

a From ref 44 for 9, 10, 11, 130, 131; from ref 45 for 134, 135, 136, and from ref 55 for 200–208. b This work.
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and compared with other available theoretical and experi-
mental results.

Before discussing the results in some detail, let us point
out that for medium size basis sets (e.g., 6–31G(d,p), cc-
pVDZ, N07D) the number of components of d functions
plays an important role in obtaining accurate hyperfine
coupling constants: in particular it is mandatory to use the
redundant set of six d functions (which is the standard for
6–31G-like basis sets) because the additional s function
implicitly added when using a 6d set plays a non-negligible
role in completing the s space. Although this is not the case
for larger basis sets (essentially equivalent results are
obtained by the EPR-III basis set using 5d or 6d functions),32,46

we think that this is a modest price to be paid for the much
reduced cost of N07D wrt EPR-III. From another point of
view, diffuse polarization functions play a significant role
for electric properties, which are, in turn, related to nonco-
valent interactions. As a compromise between accuracy and
cost, we decided, on the ground of test computations (some
of which are discussed in the next section) to add diffuse d
functions only on O, F, and Cl atoms.

Geometric Parameters and Electric Properties. The
performances of the N07D basis set are generally comparable
to those of aug-cc-pVDZ, with increased computational
efficiency. For purposes of illustration, we report in Table 2
some significant parameters of H2O, HF, HCl, and of the
nitroxide radical TEMPO (Figure 1).52–56 While structural
parameters are generally satisfactory, irrespective of the
presence of diffuse functions on O, F, and Cl atoms, dipole
moments are significantly improved by the addition of diffuse
polarization functions, reaching quantitative agreement with
experiment. Thus the range of application of the B3LYP/
N07D model is significantly enlarged by addition of diffuse
polarization functions on electronegative atoms.

Hyperfine Coupling Constant. A variety of molecules
containing hydrogen and atoms from the second- and third-
row of the periodic table have been studied. We have taken
199 radicals (for a total of 221 hcc’s) considered by
Hermosilla and co-workers,44–46 together with 9 additional
radicals containing fluorine atoms.57 The selected set (shown
in Figure ) includes neutral, cationic, anionic, doublet, triplet,
quartet, localized, and conjugated radicals.

Figure 3. MADs (in Gauss) for nuclei of second and third rows. MAD (mean absolute deviation ) Σ|acalc-aexp|/N).
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Before considering detailed results, we point out that the
reduced number of experimental data available for Be, B,
and Cl does not allow for a significant statistical analysis:
the corresponding results are thus collected in Table 3 for
purposes of illustration only: it is quite apparent that the
N07D basis set delivers in all cases reasonable results.

For all the other atoms, we report the number of data (N),
mean absolute deviation (MAD), data range, average absolute
error, and mean percent error (MPE) between calculated and
experimental values. Next we give the correlation coefficient
(R2), slope, and intercept of the least-squares line. The MAD
and MPE only consider the absolute value, so that all

deviations are converted to positive numbers, added, and then
averaged. Since the absolute errors increase, of course, with
the range spanned by the corresponding hcc’s, the error
expressed in a percentage basis would seem coherent and
intuitive: however, this procedure gives rise to serious
difficulties with hcc’s that are very small or close to zero.
In such circumstances, regression analysis represents, in our
opinion, the simplest and most useful approach for an
unbiased comparison between large sets of computed and
experimental hcc’s.

Hydrogen atoms require some specific considerations in
view of the lack of inner shells and of the overwhelming
role of small hcc’s in an unbiased statistics. We have thus
selected a specific set of data in which the presence of σ
radicals (characterized by large hcc’s) has been overempha-
sized. The results collected in Tables 4 and 5 show that
different basis sets are nearly equivalent in this connection
leading to a percent error around 10%, which is close to
that of second-row atoms.

We analyze the data for the other atoms in separate parts.
In the first one, we consider each nucleus separately; next,
atoms belonging to the same row of the periodic table are
grouped together, and, finally, all the atoms are taken as a
single set. We compare our results (Tables 6-12) with both
experimental data and theoretical ones making explicit
reference, in the latter case, to the B3LYP results with

Table 10. Theoretical and Experimental Hyperfine
Coupling Constants (Gauss) of Silicon Nuclei

structure Silicon (29Si) TZVPa cc-pVQZa N07Db expa

132 Si -457.1 -456.9 497.9 498.0
138 Si -391.8 -404.0 426.8 416.0
139 Si -162.7 -161.4 164.6 181.0
140 Si -275.7 -280.7 290.8 295.0
141 Si -161.3 -160.2 164.2 183.0
142 Si -159.8 -158.7 162.6 181.0
143 Si -303.0 -305.8 311.0 339.0
144 Si -145.5 -144.1 147.6 170.0
145 Si -121.1 -125.3 122.9 137.0
146 Si 1.5 1.6a -1.6 1.5
147 Si 6.8 7.5a -7.1 7.0
148 2Si 6.6 7.9a -5.6 6.7
149 2Si 6.1 6.6a -5.6 5.7
150 Si 1.3 1.2a -1.5 1.5
151 2Si 5.0 5.8a -3.8 4.5
152 Si 5.8 6.7a -4.9 6.2
153 2Si 4.2 4.2a -4.3 3.9
154 Si -140.4 -143.0a 137.5 163.0
155 Si -62.8 -63.3a 53.9 64.0
155 3Si 4.0 3.4a -4.9 7.1
156 2Si 5.2 5.4a -5.1 4.6
157 2Si 3.9 4.0a -3.9 3.5
158 2Si 2.9 3.3a -3.5 2.7
159 4Si -18.7 -19.1a 19.8 20.9
160 4Si -9.8 -10.0a 10.2 12.5

a From ref 45. b This work.

Table 11. Theoretical and Experimental Hyperfine
Coupling Constants (Gauss) of Phosphorus Nuclei

structure Phosphorus (31P) TZVPa cc-pVQZa N07Dbb expa

131 P 96.9 72.1 65.1 84.8
133 P 702.6 701.9 728.4 721.3
134 P 1203.3 1241.8 1305.8 1330.0
135 P -47.8 -41.9 -46.9 39.1
136 P 1262.3 1290.5 1427.6 1328.2
161 P 76.9 60.2 64.8 77.4
162 P 61.8 56.4 46.0 68.3
163 P 720.6 761.1 784.9 833.5
164 P 479.5 487.8 536.7 519.3
165 P 1248.5 1314.2 1312.9 1371.0
166 P -12.5 -8.7 -15.7 13.5
167 P -12.7 -9.2 -17.7 16.8
168 P -12.5 -8.3 -16.5 14.7
169 P 302.2 319.5 317.4 375.0
170 P 322.1 322.2 329.1 388.9
171 P 469.1 475.2 495.1 484.0
172 P 22.4 19.8 18.5 23.6
173 P 61.9 70.7 72.2 78.7
174 P 297.3 312.9 318.5 361.6
175 2P 439.5 459.2 479.9 482.0
176 P 508.7 530.4 547.6 557.0

a From ref 45. b This work.

Table 12. Theoretical and Experimental Hyperfine
Coupling Constants (Gauss) of Sulfur Nuclei

structure Sulfur (33S) TZVP cc-pVQZ N07Db exp

137 S 314.3 335.7 329.3 362.6
177 S 7.8 7.5 6.6 8.0
178 2S 3.4 3.2 3.2 4.2
179 2S 2.2 2.1 2.1 3.3
180 2S 3.4 3.1 3.2 4.4
181 2S 2.1 2.0 3.4 1.3
182 2S 7.9 7.1 6.9 9.8
183 2S 3.1 2.7 2.8 3.9
184 S 61.2 65.8 64.6 83.2
185 4S 3.5 3.2 3.0 4.3
186 4S 3.5 3.1 3.0 4.2
187 2S 7.6 6.4 6.5 9.4
187 2S -0.8 -0.8a -0.8 0.8
188 S2,6 -1.0 -1.1a -0.8 1.4
189 2S 5.2 5.9a 4.2 7.2
190 S1,2,5,6 3.6 4.2a 3.1 4.4
191 S 8.4 9.3a 7.2 11.9
192 2S 7.1 7.8a 6.0 9.2
193 2S 4.4 5.0a 3.9 5.3
194 S 6.2 6.9a 5.4 8.3
195 4S 3.3 3.7a 2.8 4.1
196 4S 3.2 3.6a 2.7 4.0
197 2S 4.1 4.5a 3.5 4.6
198 4S 2.4 2.9a 2.1 3.4

a From ref 45. b This work.

Figure 4. Structures of the glycine radical.
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different basis sets reported in refs 44-46 and to some new
EPR-III computations for aromatic radicals containing
fluorine atoms. Tables 13-16 collect the results of the
different statistical analyses, and Figure 3 sketches the MADs
for each atom.

For the radicals containing carbon and oxygen atoms
we compare our data with the theoretical ones calculated
with four different basis sets [6–31G(d), EPR-III, TVPZ,
and cc-pVQZ], whereas for nitrogen we have three basis
sets [6–31G(d), EPR-III, and TVPZ] and for fluorine just
one [EPR-III]. In general, all DFT methods yield aX values
close to the experimental ones, and the best results are
consistently delivered by the N07D basis set. The per-
formances of the different basis sets are compared in
Figure 3 (MADs) and in Tables 13-15 (statistical analysis
data). The N07D results for carbon and oxygen atoms are
much better than those delivered by other (even signifi-
cantly larger) basis sets both in terms of MADs (3.5 and
1.6 Gauss, respectively) and closeness of the slope of the
linear regression to the theoretical value of 1.0 (0.999 and
0.925, respectively). The comparison for fluorine atoms
is restricted to the EPR-III basis set due to the lack of
other results: also in this case the N07D MAD is
significantly better (2.7 vs 3.5 Gauss). As previously
pointed out,44 the 6–31G(d) basis set delivers particularly

good results for nitrogen (albeit still inferior to their N07D
counterparts), but this good behavior does not extend to
other atoms, and, as said before, the geometries and
interaction energies delivered by this basis set are not fully
satisfactory. The B3LYP/N07D model gives by far the
lowest MAD (Figure 3) for the whole set of C, N, O, F
hcc’s (2.4 Gauss). Moreover, the results of a linear
regression for all nuclei of the second row (155), sum-
marized in Table 8, shows that with N07D R2 is higher
(0.997) than with all the other basis sets, the slope is close
to 1.0 (0.991), and the intercept is quite small (-0.873
Gauss).

For the third-row atoms, previous results have been
obtained only with the TVPZ and cc-pVQZ basis sets, due
to the lack of purposely tailored (e.g., EPR-III) basis sets.
Except for the sulfur atom, for which the lowest MAD value
is obtained with the cc-pVQZ basis set (2.8 vs 3.8 Gauss),
N07D shows the best results (Figure 3). For all three atoms
the R2 value is higher than 0.99, and the slopes are
considerably improved by using the N07D basis set and show
values close to unit (Tables 7 and 8). The complete regression
analysis performed for all third atoms indicates that the
results are very satisfactory, indeed, the R2 is 0.9958, the
slope is 0.9956, and the MAD is the lowest among the avail-
able basis sets (Table 15). In summary, we can conclude

Table 13. Data Analysis for Second Row Nucleia

6–31G(d) EPR-III TVPZ cc-pVQZ NO7D exp

Carbon: N ) 23
MAD 10.7 4.0 5.0 6.6 3.5
max absolute error 66.0 16.7 28.7 14.8 9.3
average E% 18.6% 10.9% 9.3% 18.7% 10.5%
max E% 74.8% 42.7% 38.0% 53.2% 43.9%
R2 0.9915 0.9988 0.9991 0.9983 0.9991
intercept 7.5938 -1.7012 -3.6841 -6.2305 -1.1153
slope 0.9033 1.0182 1.0562 1.0196 0.9987
max 495.3 569.3 587.8 566.5 555.3 561.3
min 2.7 4.9 5.3 4.0 4.8 8.6

Nitrogen: N ) 105
MAD 1.5 1.9 2.4 1.5
max absolute error 6.5 7.7 8.9 5.9
average E% 7.9% 10.3% 13.5% 8.1%
max E% 39.2% 46.4% 55.7% 35.4%
R2 0.9725 0.9751 0.9740 0.9771
intercept -2.2515 -4.6346 -6.3376 -3.8563
slope 1.0314 1.1170 1.1639 1.1270
max 32.2 33.1 33.0 35.3 33.3
min 6.5 6.6 4.7 8.4 10.6

Oxygen: N ) 12
MAD 6.6 6.5 8.5 10.8 1.6
max absolute error 19.3 19.3 19.3 21.2 3.8
average E% 33.6% 22.7% 38.8% 52.7% 16.4%
max E% 96.0% 50.0% 54.5% 91.8% 57.7%
R2 0.7982 0.9190 0.7383 0.2041 0.9359
intercept -1.1787 2.7574 2.8204 3.7203 1.0446
slope 0.9311 0.6806 0.4738 0.2128 0.9246
max 31.0 23.1 16.9 14.6 29.3 29.7
min 0.2 4.2 2.2 1.4 3.5 3.6

Fluorine: N ) 29
MAD 3.5 2.7
max absolute error 19.6 20.5
average E% 14.6% 12.4%
max E% 40.0% 20.3%
R2 0.9914 0.9956
intercept 0.0117 1.6564
slope 0.9320 0.9145
max 187.0 186.1 206.6
min 2.5 2.5 2.1

a MAD (mean absolute deviation in Gauss) ) Σ|acalc-aexp|/N(total nuclei); E% (percent error) ) acalc - aexp/aexp.
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that the B3LYP model couples computational efficiency and
reliability for radicals involving atoms of the second and third
row.

The performances of the B3LYP/N07D model for a typical
problem involving at the same time stereoelectronic, vibra-
tional, and environmental effects can be judged by the results

Table 14. Data Analysis for Third-Row Nucleia

TVPZ cc-pVQZ NO7D exp

Silicon: N ) 25
MAD 10.3 9.5 7.2
max absolute error 40.9 41.1 28.0
average E% 10.6% 13.8% 11.1%
max E% 43.7% 52.1% 31.7%
R2 0.9988 0.9978 0.9955
intercept -1.0288 -0.9419 -4.0187
slope 0.9166 0.9257 0.9803
max 457.1 456.9 497.9 498.0
min 1.3 1.2 1.5 1.5

Phosphorus: N ) 21
MAD 40.4 29.1 24.6
max absolute error 126.7 88.2 99.4
average E% 11.5% 14.3% 10.8%
max E% 24.4% 45.2% 32.7%
R2 0.9968 0.9983 0.9942
intercept -3.3470 -10.7315 -13.1618
slope 0.9196 0.9586 1.0060
max 1262.3 1314.2 1427.6 1371.0
min 12.5 8.3 15.7 13.5

Sulfur: N ) 25
MAD 4.0 2.8 3.8
max absolute error 48.3 26.9 33.3
average E% 21.8% 19.2% 35.7%
max E% 61.5% 53.8% 164.9%
R2 0.9988 0.9989 0.9988
intercept -0.6699 -0.9042 -1.3765
slope 0.8625 0.8952 0.9058
max 314.3 335.7 329.3 362.6
min 0.8 0.8 0.8 0.8

a MAD (mean absolute deviation in Gauss) ) Σ|acalc-aexp|/N(total nuclei); E% (percent error) ) acalc - aexp/aexp.

Table 15. Data Analysis for Second- and Third-Row and All Nuclei

6–31G(d) EPR-III TVPZ cc-pVQZ NO7D exp

II Row Atoms: N ) 155
MAD 3.5 3.2 4.2 2.4
max absolute error 66.0 19.6 28.7 20.5
average E% 12.9% 15.1% 20.4% 11.6%
max E% 96.0% 50.0% 55.7% 57.7%
R2 0.9903 0.9967 0.9955 0.9973
intercept 1.1825 -2.6255 -4.3727 -0.8730
slope 0.9364 1.0228 1.0544 0.9905
max 495.3 569.3 587.8 555.3 561.3
min 0.2 3.6 2.7 3.5 3.5

III Row Atoms: N ) 71
MAD 17.2 13.1 11.2
max absolute error 126.7 88.2 99.4
average E% 14.7% 15.8% 19.1%
max E% 61.5% 53.8% 164.9%
R2 0.9979 0.9986 0.9958
intercept -1.7333 -3.7425 -5.8020
slope 0.9171 0.9491 0.9956
max 1262.3 1314.2 1427.6 1371.0
min 0.8 0.8 0.8 0.8

All Atoms: N ) 226
MAD 8.3 5.2
max absolute error 126.7 99.4
average E% 18.6% 14.0%
max E% 61.5% 164.9%
R2 0.9966 0.9963
intercept -1.1502 -2.1904
slope 0.9246 0.9913
max 1262.3 1427.6 1371.0
min 0.8 0.8 0.8

a MAD (mean absolute deviation in Gauss) ) Σ|acalc-aexp|/N(total nuclei); E% (percent error) ) acalc - aexp/aexp.
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reported in Table 16 for the glycine radical (GlyR, Figure
4) in aqueous solution.43,58,59 Since the hcc’s computed for
the minimum energy structure in vacuum are significantly
tuned by both intramolecular vibrations and by solvent
librations, the reported results are obtained by averaging over
100 frames extracted at regular time steps from the ab initio
dynamics described in ref 43. From a general point of view,
all the computations provide, as expected, positive values
for the CR and N hcc’s and negative values for the hydrogen
atoms. Moreover, dynamical effects reduce the differences
between the pairs H1, H2, and CR, HR. Polar solvents increase
delocalization along the GlyR backbone, due to an increased
importance of ionic resonance structures characterized by
double N-C and C-C′ bonds and to the concomitant
reduction of HR hcc and of the pyramidalization of the aminic
moiety. This last structural effect induces both a significant
reduction of the H2 hcc and an increased delocalization of
the molecular orbital formally containing the unpaired
electron, with the consequent reduction of the CR and HR

hcc’s. After averaging by MD in aqueous solution, the
computed values are in general good agreement with
experiment. It is, however, quite apparent that hydrogen
atoms are described in a nearly equivalent way by the EPR-
II and N07D basis set, whereas the nitrogen hcc is signifi-
cantly improved by the new basis set, which is able to deliver
quantitative agreement with experiment.

Concluding Remarks

Some hybrid functionals such as the popular B3LYP model
are able to treat in a balanced way the differential spin
polarization of different shells, thus providing a good
description of the magnetic properties of many classes of
compounds. Optimization of core-valence, diffuse, and
polarization functions in a medium size basis set further
extends the reliability of the computational model for both
structural and magnetic properties. For all second-row atoms
the B3LYP/N07D model couples quantitative agreement with
experimental data and predictive power. The situation is
slightly worse for third-row atoms, where recourse to
regression analysis could prove valuable.

All in all, the B3LYP/N07D results seem accurate enough
to allow for quantitative studies, especially taking into
account that the same model and basis set can be used for
different properties and for second- and third-row atoms.
Furthermore, the availability of effective discrete/continuum
solvent models and of different dynamical approaches,
together with the reduced dimensions of the N07D basis set,
allows for the performing of comprehensive analyses aimed
at evaluating the roles of stereoelectronic, vibrational, and

environmental effects in determining the overall properties
of large flexible radicals of current biological and/or tech-
nological interest.
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This paper was withdrawn on November 11, 2008. TheCHARMMcarbohydrateforcefieldparametersdevelopedpreviouslyforhex-
opyranose monosaccharides are extended to linear sugar alcohols (alditols) having carbon
backbone lengths ranging from n ) 3 to n ) 6 as well as to linear aldoses and ketoses and
six-membered cyclic polyols. Dihedral parameters are developed for the linear carbon backbone,
as required to reproduce conformational energies at the MP2/cc-pVTZ//MP2/6-31G(d) level of
theory, and both bonded and nonbonded parameters are developed for the ketose carbonyl
group, while the remaining parameters are transferred directly from prior work. Solute-water
hydrogen bonding interaction energies and distances show good agreement with quantum
mechanical values that have been scaled appropriately for use as target data for a condensed-
phase force field. Computed densities for aqueous solutions of a variety of alditols, including a
ternary mannitol+sorbitol+water mixture and ranging in concentration from 0.07 molal to 6 molal,
are all within 1.5% of experimental values. Additionally, both the heat of vaporization and
molecular volume of neat liquid glycerol (n ) 3) are within 2% of the experimental values. Taken
together, these results show that the parameters as used for hexopyranose monosaccharides,
including the aliphatic and hydroxyl nonbonded Lennard-Jones and partial charge parameters,
are transferable to sugar alcohols. In line with previous aqueous hexopyranose monosaccharide
data, analysis of the computed radial distribution functions and number integrals of aqueous
alditol solutions shows the local microstructure of water to remain unperturbed despite the
presence of the alditols. The new parameter set enables the modeling of the linear forms of
monosaccharides such as glucose and fructose as well as the alditols that are the products of
their reduction.

Introduction

Alditols are acyclic, polyhydric alcohols that can be derived
from linear aldoses or ketoses by the reduction of the
carbonyl group.1 Common to the alditols is their general
structure consisting of a linear aliphatic carbon backbone
with a hydroxyl substitution at each carbon. What differenti-
ates the alditols is the number of backbone carbon atoms n
and the chirality at each of the nonterminal carbons. The
tetritols (n ) 4) consist of erythritol and D- and L-threitol,
followed by the pentitols (n ) 5) D- and L-arabinitol, ribitol,

and xylitol. The hexitols (n ) 6) have ten different isomers
with differing chirality on the various carbons, with common
species including D-glucitol (commonly called “sorbitol”) and
D-mannitol. The widely studied sorbitol can be converted to
the aldose form of the monosaccharide D-glucose by oxida-
tion at the C1 position, while oxidation at C2 produces the
ketose form of the monosaccharide D-fructose.

The alditols, which are typically crystalline under ambient
conditions and are highly soluble in water owing to the
presence of a hydroxyl moiety at each carbon position, have
both biological and industrial importance. For example, an
increased conversion of glucose to sorbitol and then to
fructose is seen in diabetes and implicated in the associated
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Abstract: Car–Parrinello molecular dynamics (CPMD) simulations are used to investigate the
structural properties of 1 and 2 molal (m) CaCl2 aqueous solutions and, in particular, the radial
distribution functions, coordination numbers, and dipole moments of water molecules in the first
solvation shell. According to these simulations, the first solvation shell of the Ca2+ ion consists
of six water molecules, that are characterized by an increased averaged dipole moment compared
to that of bulk water, and a first-shell Ca-O radial distribution function peak at 2.39 Å. The
results are compared to those of CPMD simulations of Ca2+ (no counterions), and no significant
differences are found. This indicates that the homogeneous neutralizing background charge
density implicitly included in simulations of non-neutral systems appropriately mimics the presence
of the counterions (at least in terms of reproducing the solvation structure properties and for the
box sizes considered). Classical molecular dynamics (MD) simulations of aqueous Ca2+ using
varying box sizes confirm this suggestion. The CPMD simulations at 2 m concentration also
reveal additional possibilities for the structural arrangement of water molecules and chloride
ions around Ca2+. In particular, they support the stability of Ca2+-Cl- (contact) and Ca2+-H2O-
Cl- (solvent-separated) ion pairs. In addition, the solvent-separated cation pair is found to occur
in a deprotonated Ca2+-OH--Ca2+ form. The existence of such a species has, to our knowledge,
never been invoked previously to account for experimental data on CaCl2 solutions.

1. Introduction

Although the Ca2+ aqua-ion is of great importance in biology
and a key component of natural ground waters, many details
of its solvation structure remain controversial.1 Even for such
fundamental properties as the average coordination number
(CN) and the average Ca-O distance (r[Ca-O]) for the first
solvation shell, the results widely depend on the (experi-
mental or theoretical) method of investigation. Challenges
to experimental approaches involve factors such as the low
atomic number of the element (relatively weak scattering
center) and the uncertainty in modeling the scattering data

(solute–solvent correlations only accounting for a very
limited fraction of the measured scattering intensities). In
addition the r[Ca-O] distance of about 2.5 Å leads to a
partial occlusion of the corresponding peak by the broad
O-O peak of water in diffraction studies, rendering the
experimental determination of the hydration structure dif-
ficult, in particular in the dilute regime. Based on X-ray
diffraction (XRD) experiments on aqueous solutions of
calcium halides or nitrate, CNs ranging between 5.9 and 8
have been reported2–8 at concentrations ranging (in molal
units) between 1 and 6 m (Table 1). Neutron diffraction (ND)
experiments yielded values ranging between 5.5 and 10 in
the concentration range between 1 and 6.4 m.7,9–11 Extended
X-ray absorption fine structure (EXAFS) measurements
resulted in CNs between 6.8 and 812,13 at concentrations
ranging from 0.12 to 6 m. Recently, Megyes et al.7 reported
the results of combined XRD and ND experiments on 2.5
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and 4 m CaCl2 solutions. At 2.5 m concentration they found
consistent results of 6.5 ( 0.2 (XRD) and 6.2 ( 0.3 (ND)
for the CN with a r[Ca-O] distance of 2.43–2.46 Å. At 4 m
concentration the experiments suggested a CN of 5.9 ( 0.3
(XRD) with a r[Ca-O] distance of about 2.43 Å (XRD).
Theoretical studies also contributed to the interpretation of
experimental data and provided further (experimentally
inaccessible) information on Ca2+ solvation (Table 2). The
results also presented an important sensitivity to the applied
methodology and parameters. Most empirical force field
calculations relied on pairwise-additive interactions (no
explicit electronic polarization). Molecular dynamics (MD)
simulations with a modified central force–potential for water,
together with ion–water and ion–ion pair potentials derived
from ab initio calculations, suggested a first hydration shell
consisting of either 9 or 10 water molecules and a r[Ca-O]
distance of 2.49 Å for 1.1 m aqueous CaCl2 solution.14 In
the higher concentration regime, CNs of 6.5 and 6.2 were
suggested for 2.5 and 4.0 m CaCl2, respectively,7 together
with a r[Ca-O] distance of 2.48 Å. Other simulations based
on simple ab initio pair potentials gave CNs of 8–9.3 and
r[Ca-O] distances of 2.39–2.542,15–19 in a similar concentra-
tion range. The use of empirical potentials including electron
polarizability explicitly produced CNs between 7.2 and 10
and r[Ca-O] distances of 2.42–2.51 Å.6,20,21 Monte Carlo
(MC) simulations utilizing the MCHO potential form (in-
cluding polarization) suggested values of 7 for the CN and
2.3 Å for the r[Ca-O].22 The importance of electronic
polarizability was investigated more directly in a comparison
of classical simulations with pairwise additive versus ex-
plicitly polarizable ab initio derived ion–water potentials. The

nonpolarizable model resulted in a CN of 9.2 and r[Ca-O]
distance of 2.47,19 while variants of the polarizable one gave
CNs ranging between 7.2 and 8.6 with r[Ca-O] distances
between 2.42 and 2.50 Å.21,23 A good method to assess the
importance of including higher-order terms (three-body terms
or explicit polarizability) in the expansion of the interaction
potential is to perform ab initio calculations of small
ion–water clusters, revealing differences in binding energy
per additional water molecule upon increasing the cluster
size.24,25 Such ab initio molecular orbital calculations,
performed at the restricted Hartree–Fock (HF) and second-
order Mφller–Plesset perturbation (MP2) levels of theory and
followed by natural energy decomposition analysis, empha-
sized the importance of polarization effects in the binding
energies of M2+(H2O)n clusters.26 Polarization has also been
recognized through classical MD calculations using the

Table 1. Experimental Results on Ca2+ Solvation
Previously Reported in the Literature Based on X-ray
Diffraction (XRD), Neutron Diffraction (ND), and Extended
X-ray Absorption Fine Structure (EXAFS) Studiesa

ref method salt concn (m) CN r [Ca-O] (Å)

2 XRD CaCl2 1.1 6.9 2.39
3 XRD CaCl2 3.3 8 2.40
3 XRD CaCl2 5.2 8 2.40
4 XRD Ca(NO3)2 3.6 7 2.44
4 XRD Ca(NO3)2 6.0 7 2.45
5 XRD CaCl2 1.0 6 2.42
5 XRD CaCl2 2.0 6 2.42
5 XRD CaCl2 4.5 6 2.42
6 XRD CaCl2 2.0 6 2.46
6 XRD CaBr2 1.5 8 2.46
6 XRD CaI2 1.5 8 2.46
7 XRD+ND CaCl2 2.5 6.2(ND) 2.43–2.46(ND)
7 XRD+ND CaCl2 2.5 6.5(XRD) 2.43–2.46(XRD)
7 XRD+ND CaCl2 4.0 5.9(XRD) 2.43(XRD)
8 XRD CaCl2 1.0 8 2.45
9 ND CaCl2 4.5 5.5 2.41
10 ND CaCl2 1.0 10 2.46
10 ND CaCl2 2.8 7.2 2.39
10 ND CaCl2 4.5 6.4 2.40
11 ND CaCl2 6.4 6.95 2.41
11 ND CaCl2 4.0 7.3 2.40
12 EXAFS CaCl2 0.12 8 2.46
13 EXAFS CaCl2 0.2 6.8 2.43
13 EXAFS CaCl2 6.0 7.2 2.44

a The method, salt investigated, salt concentration (in molal
units), and the resulting first-shell coordination number (CN) and
average Ca-O distance (r[Ca-O]) are indicated.

Table 2. Theoretical Results on Ca2+ Solvation Previously
Reported in the Literature from Monte Carlo (MC),
Classical Molecular Dynamics (MD),a Quantum
Mechanical/Molecular Mechanical (QM/MM) Simulations,
Quantum Chemical Statistical Mechanical (QMSTAT)
Calculations, and Car-Parrinello Molecular Dynamics
(CPMD) Simulationsb

ref method salt
concn

(m) CN
r [Ca-O]

(Å)

2 MD CaCl2 1.1 9 2.39
6 MD-P(Åqvist) Ca2+ 8 2.40
6 MD-P(Bounds) Ca2+ 9–10 2.51
6 MD-P(Gromos) Ca2+ 8 2.46
7 MD CaCl2 2.5 6.5 2.48
7 MD CaCl2 4.0 6.2 2.48
8 ab initio/MP2 Ca2+ 1 8 2.46
8 ab initio/MP2 Ca2+ 2.5 6.9 2.43
8 ab initio/MP2 Ca2+ 4 5.8 2.43
8 ab initio/MP2 Ca2+ 6 5.1 2.45
14 MD CaCl2 1.1 9–10 2.49
15, 16 MD-T Ca2+ ∼1 7.1 2.50
15, 16 MD Ca2+ ∼1 9.2 2.47
15, 16 QM/MM

(ab initio)
Ca2+ ∼1 7.6 2.46

15, 16 QM/MM(DFT) Ca2+ ∼1 8.1 2.51
17 MD Ca2+ 8 2.50
18 MD Ca2+ 9.3 2.54
19 QM/MM Ca2+ 0.28 8.3 2.45
19 MD Ca2+ 0.28 9.2 2.47
20 MD-P Ca2+ 7.9 2.50
21 MD-P Ca2+ 7.2–7.7 2.42–2.46
22 MC-P Ca2+ 7 2.3
23 PCM/MD-P

(PCM)
Ca2+ 8.6 2.50

27 QM/MM
(ONIOM-XS)

Ca2+ 6 2.53

28 QMSTAT Ca2+ 6.9 2.50
25 CPMD Ca2+ 6 2.45
31 CPMD Ca2+ 7–8 2.64
32 CPMD Ca2+ 6.2 2.43
32 CPMD Ca2+ 7 2.43
32 CPMD Ca2+ 8 2.44
present study CPMD CaCl2 1 6–7 2.39
present study CPMD CaCl2 2 6 2.39
present study CPMD Ca2+ 2 6 2.39

a The “T”, “P”, or “PCM” added to the method indicates inclusion
of three-body terms, explicit polarization, or polarizable continuum
model implicit solvation. b The method, salt investigated, salt con-
centration (in molal units) and the resulting first-shell coordination
number (CN) and average Ca-O distance (r[Ca-O]) are indicated.
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polarizable continuum model (PCM) to be largely responsible
for the nonclassical bent and pyramidal structures of the gas-
phase di- and trihydrates and suggested to represent an
important factor for determining the CN in solution.23

Besides clusters in gas-phase, quantum-mechanical calcula-
tions also investigated solvation in the bulk. A comparison
of (i) a classical simulation with a pairwise force field, (ii)
a classical simulation with a force field including three-body
terms, (iii) an ab initio quantum mechanical/molecular
mechanical (QM/MM) simulation, and (iv) a density func-
tional theory (DFT) QM/MM simulation reported CNs of
9.2, 7.1, 7.6, and 8.1, respectively,15,16 with corresponding
r[Ca-O] distances of 2.47, 2.50, 2.46, and 2.51 Å, respec-
tively. QM/MM calculations with the ONIOM-XS (n-layered
integrated molecular orbital and molecular mechanics ex-
tended to solvation) method led to a CN of 6 and an r[Ca-O]
distance of 2.53 Å.27 A CN of 6.9 together with an r[Ca-O]
distance of 2.50 Å was also reported in a recent combined
quantum chemical statistical mechanical (QMSTAT) calcula-
tion.28 Finally, DFT based simulations using the Car–Par-
rinello molecular dynamics (CPMD) method29,30 using
different simulations protocols and density functionals (no
counterions) showed variations in the water coordination
number of Ca2+ from 6 to 8 and in the r[Ca-O] distance
from 2.44 to 2.64 Å.25,31,32

An important point to keep in mind when performing
classical or Car–Parrinello (CP) MD simulations to inves-
tigate the solvation properties of ions is that the finite size
of the simulated systems and the approximate treatment of
electrostatic interactions may have a significant impact on
the simulation results.33 In most cases, these simulations are
performed under periodic boundary conditions (so as to
eliminate surface effects) based on truly microscopic box
volumes. When electrostatic interactions are handled as
exactly periodic by application of lattice-sum methods
(classical simulations) or plane-wave expansions (CP simula-
tions), interactions between the reference box and its periodic
images represent a significant (volume-dependent) perturba-
tion compared to the ideal situation of a macroscopic solution
at infinite dilution. Furthermore, in the case of non-neutral
systems (e.g., single solvated ion without counterions),
application of periodic electrostatics implicitly amounts to
including a homogeneous neutralizing background charge
density within the simulated box. The impact of periodicity
induced artifacts on the solvation thermodynamics of ions
is extremely large and cannot be neglected.34–36 However,
the associated structural perturbation (e.g., on pair distribution
functions and CNs) may be more limited,33,37 especially
when the system is neutralized by the explicit inclusion of
counterions. Nevertheless, the possible influence of artificially
periodic electrostatics and neutralizing background charge
on the results of previously reported CPMD simulations25,31,32

of non-neutralized Ca2+ in water (which may still be
important in view of the very small boxes considered in CP
simulations compared to classical ones) has not been
investigated systematically.

In the present study we expand on previously reported
CPMD simulations.25 The goal of this additional investiga-
tion is threefold: (i) comparing the results of a previous

CPMD simulation25 of 1 m Ca2+ in water (single Ca2+, no
counterions) with those of a new CPMD simulation of 1 m
CaCl2 (single Ca2+ and 2Cl- counterions); (ii) evaluating
via classical MD simulations the impact of the box size (via
the homogeneous background charge density) on the simu-
lated structural properties obtained from this previous CPMD
simulation;25 and (iii) investigating ion association properties
in CaCl2 solutions based on four new CPMD simulations of
2 m CaCl2 (2Ca2+ and 4Cl-) initiated from different starting
configurations (free ions or Ca2+-OH--Ca2+, Cl--Ca2+-Cl-

and Ca2+-Cl- species) along with one new CPMD simulation
of 2 m Ca2+ (2Ca2+; no counterions).

2. Computational Details

The CPMD38 simulations were performed using the BLYP
functional, i.e. with the exchange functional of Becke39 and
the correlation functional of Lee, Yang, and Parr,40 using a
Troullier-Martins norm-conserving pseudopotential for
Ca2+ 41 and oxygen and hydrogen pseudopotentials as in ref
25. The mass of the hydrogen nucleus was set to that of the
deuterium isotope. The valence electron wave function was
expanded in plane waves with an energy cut off of 70 Ry.
The fictitious electron mass was set to 600 au and the time
step to 5 au (0.12 fs). The six simulations (see below) were
carried out under periodic boundary conditions and involved
3 ps equilibration in the canonical ensemble, followed by
7.2 ps production in the microcanonical ensemble (the 1 m
CaCl2 production simulation was later extended to 19.2 ps).
During the equilibration, the temperature was maintained at
320 K using a Nosé-Hoover thermostat.42–45

The systems consisted of a cubic box of 12.43 Å edge
length, containing 58 water molecules (effective water
density 1 g.cm-3) and either 1 Ca2+ and 2 Cl- ions (1 m
CaCl2) or 2Ca2+ and 4 Cl- ions (2 m CaCl2). A third system
contained 62 water molecules, 2Ca2+ and no counterions (2
m Ca2+). The resulting exact molalities and solution densities
are 0.96 m and 1.00 g.cm-3 (1 m CaCl2), 1.91 m and
1.09 g.cm-3 (2 m CaCl2), and 1.79 m and 1.00 g.cm-3 (2 m
Ca2+), respectively. Note that the electrostatic interactions
are treated as exactly periodic (i.e., they include contributions
from the interaction between nuclei and electrons within the
computational box as well as interactions between this box
and all its periodic copies). In the case of a non-neutral
system (previous study25 of 1 m Ca2+ and present simulation
of 2 m Ca2+), this implicitly involves the inclusion of a
homogeneous neutralizing background charge density within
the computational box. When the system is neutral (present
simulations of 1 and 2 m CaCl2), there is no such background
charge.

The initial configuration for the 1 m CaCl2 system was
taken from a classical MD simulation using the ion–water
potential of Floris et al.23 and the extended simple point
charge SPC/E water model.46 This initial configuration
contained seven water molecules in the first solvation shell
of the ion. The simulations of the 2 m CaCl2 system were
initiated from four different configurations illustrated in
Figure 1. The initial configuration of System A consisted of
two six-coordinated Ca2+ ions at a distance of 4 Å (free
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ions). The initial configuration of System B was generated
from that of System A by slightly increasing the distance
between the ions. This initial configuration consists of two
six-coordinated Ca2+ ions at a distance of 4.5 Å, bridged
by an OH- group (species further noted Ca2+-OH--Ca2+).
The second hydrogen of the bridging water molecule formed
an H3O+ ion in the bulk water. The initial configuration of
System C was taken from a classical MD simulation using
the ion–water potential of the GROMOS96 force field47,48

and the SPC water model46 Here, the Ca-Ca distance is
6.5 Å. While one of the Ca2+ ion is seven coordinated, the
other forms axial Ca2+-Cl- bonds with two counterions, four
water molecules being placed in equatorial positions (species
further noted Cl--Ca2+-Cl-). The initial configuration of
System D was generated from that of System C by shortly
increasing the distance between the Ca2+ and one Cl- of
the Cl--Ca2+-Cl-species. This initial configuration consists
of one six-coordinated ion (the seventh water having left the
first coordination shell), the other ion forming one Ca2+-
Cl- bond and presenting five water molecules in the first
solvation shell (species further noted Ca2+-Cl-). Finally, a
simulation was also performed for a System E containing

2Ca2+ ions (no Cl-) and 62 water molecules. The initial
structures of systems B-D were chosen in view of the role
played by ion pairing (i.e., Ca2+-Cl-, Cl--Ca2+-Cl-, and
Ca2+-H2O-Cl- species) in determining the thermodynamical
properties of CaCl2 solutions at high concentrations.7,8,13,49

However, the Ca2+-H2O-Ca2+ species turned out to equili-
brate to Ca2+-OH--Ca2+.

The CPMD simulations were analyzed in terms of radial
distribution functions (RDFs, g(r)), running coordination
numbers (CNs, n(r)), time series of calcium-oxygen dis-
tances, and water dipole moment distribution in the first
solvation shell. To examine the latter property, a localized
molecular orbital analysis was performed by unitary trans-
formation of Bloch orbitals to yield maximally localized
Wannier functions.50–52 Within the framework of the plane
waves pseudopotential model, the maximally localized
Wannier functions are analogous to the orbitals obtained by
the Boys localization procedure commonly used in quantum
chemistry.53 The centroids of the Wannier functions (Wan-
nier centers) were then used to define a dipole moment for
individual water molecules in the simulations.

In addition to the CPMD simulations, a number of classical
MD simulations were performed in order to evaluate the
influence of modeling the counterion atmosphere implicitly
by a homogeneous neutralizing background charge density
in (CP or classical) simulations of Ca2+ under periodic
boundary conditions (without explicit counterions). These
simulations were performed at constant volume and tem-
perature using the GROMOS96 program47,48 together with
the GROMOS 43a1 Ca2+ ion–solvent parameters and the
SPC water model. The temperature was maintained close to
300 K by a Berendsen thermostat with a coupling time of
0.1 ps.54 The systems involved one Ca2+ ion and a number
of water molecules ranging from 8 to 150 in cubic boxes of
edge lengths ranging from 6.48 to 16.59 Å (effective water
density of about 1 g.cm-3, omitting the ion). The electrostatic
interactions were calculated using a lattice-sum method
(P3M,55–57 with a sixth-order truncated-polynomial charge-
shaping function of width 0.5 nm and a grid size of 32 × 32
× 32 points). This approach is the analog at the classical
level of the periodic electrostatics used in the CPMD
simulations. The cutoff radius for the van der Waals
interactions was set to 10 Å. A multicell approach58 was
used to keep all parameters of the simulation constant when
going to small simulation boxes (i.e., where the cutoff may
exceed the half-box edge). The geometry of the water
molecule was held rigid using SHAKE47 with a relative
geometric tolerance of 10-4. A time step of 2 fs was used
for integrating the equations of motion. All systems were
equilibrated during 10 ps, followed by 500 ps production.

3. Results and Discussion

3.1. CPMD Simulations of a 1 m CaCl2 Aqueous
Solution. The Ca-O and Ca-H radial distribution functions
(RDFs) as well as the running coordination numbers (CNs)
obtained from the 7.2 ps CPMD simulation of a 1 m CaCl2

solution at 320 K are displayed in Figure 2. The positions
of the first maxima in the Ca-O and Ca-H RDFs are 2.39
Å and 3.03 Å, respectively, to be compared with correspond-

Figure 1. Initial configurations of the Car–Parrinello simula-
tions (10.2 ps) of aqueous CaCl2 (2CaCl2 + 58H2O; 2 m
CaCl2) corresponding to the simulated systems A-D (see
Computational Details). A fifth system, System E, was also
simulated in the absence of counterions (2Ca2+ + 62H2O;
2 m Ca2+). The corresponding initial configuration is identical
to that of System A.
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ing values of 2.45 Å and 2.98 Å for the previously reported
CPMD simulation of 1 m Ca2+ without counterions.25 For
the Ca-O RDF the first and the second solvation shells are
clearly separated by a region of nearly zero oxygen density,
the two shells extending from about 2.1 to 2.8 Å and from
about 3.5 to 5.1 Å, respectively. For the Ca-H RDF, the

regions corresponding to the two solvation shells are broader,
shifted to larger distances and partially overlapping. This
difference between the two types of RDFs results from the
preferential orientation of the water molecules (especially
in the first shell) and the librational motions of the water
molecules (especially in the second shell). Integrating the

Figure 2. Radial distribution functions (RDFs; g(r); black and blue lines) and running coordination numbers (CN, n(r); dashed
red lines) corresponding to calcium-water and water–water distances for the Car–Parrinello simulation (7.2 ps) of aqueous
CaCl2 (1 CaCl2 + 58H2O; 1 m CaCl2; black and dashed red lines) and for Car–Parrinello simulations of pure water at the same
level of theory (blue lines): a) Ca-O, b) Ca-H, c) O-O, d) O-H, e) H-H.
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Ca-O RDF over the first shell leads to an average first-
shell CN of 6 (the corresponding integral over the Ca-H
RDF is, as expected, about 12). Integrating the Ca-O RDF
over the second shell leads to an average estimate of 13.2
water molecules. At 1 m CaCl2 concentration the Cl-

counterions are found to systematically avoid the first and
the second solvation shells of the Ca2+ ion (data not shown),
so that their influence on the Ca2+ solvation structure is
essentially negligible.

A comparison of the water–water O-O, O-H, and H-H
RDFs with those obtained from CPMD simulation of pure
water at the same level of theory25 is also shown in Figure
2. The three functions evidence a loss of structure (particu-
larly visible for the O-O RDF) in the regions corresponding
to nearest and second nearest water molecules upon going
from pure water to the CaCl2 solution. The peaks corre-
sponding to second nearest water molecules are also shifted
to slightly larger distances. The first peaks in the O-O,
O-H, and H-H RDFs are centered at 2.75, 0.95, and 1.55
Å, respectively (the former corresponding to intermolecular
and the latter two to intramolecular distances).

The dipole moments of the six water molecules in the first
coordination shell of Ca2+ were estimated based on the
Wannier function approach as implemented in the CPMD
code. This approach was previously applied59 to calculate
the dipole moment of the water molecule in the gas phase
(1.86 D) and in the bulk (about 3 D). In aqueous CaCl2

solutions, the dipole moment distribution for first-shell water
molecules is shifted compared to that of pure water. It shows
a maximum at 3.35 D, due to the electron polarization caused
by the strong electric field of the ion. The same effect was
also observed for Mg2+ and Be2+ ions in aqueous solution,
with average first-shell water dipole moments of 3.3 and 3.1
D, respectively.60,61

The above results are very similar to those obtained in
the previous investigation of a 1 m Ca2+ aqueous solution
(no Cl- counterions).25 The counterions exert no noticeable
effect on the first and second solvation shells of the Ca2+

ion (at the 1 m concentration considered here) and the first-
shell CN remains six as found previously. This is also a first
indication that the uniform neutralizing background charge
density used in the CPMD simulation of the charged system25

did not significantly affect the results (compared to the
present explicit counterion treatment).

It has been suggested21 that the low CNs and their
sensitivity to the methodology employed in different CPMD
simulations might be related to the fictitious electron mass
used in these simulations.25,31,32 We think that this is most
likely not the case. The small mass of 600 au employed in
this study produced the same results as in previous simula-
tions (900 au fictitious electron mass in ref 25). In addition
it has been convincingly shown62,63 that no direct effect of
the electron mass on static properties exists, if the masses
employed stay within reasonable values and the simulations
are correctly performed.

On the other hand, an important factor possibly affecting
the CNs observed in different studies is the pseudopotential
used to describe the core electrons of Ca2+. Our tests show
that it is important to include the 3p6 electronic state into

the explicitly described valence electrons. A too soft Ca2+

ion results if these electrons are treated as part of the core.
This has the effect that a larger water coordination shell can
form and a CN of 7–8 is obtained.31 Another important point
is the choice of the exchange-correlation functional. Simula-
tions utilizing the Perdew-Burke-Ernzerhof (PBE)64 func-
tional gave a CN of 6–7 for a flexible and 8 for a rigid model
of water.32 Recent calculations indicated that both PBE and
BLYP exchange-correlation functionals produce too low
water self-diffusion coefficients when compared to the
experimental values.65 In addition, it has been shown66,67

that, at experimental density, both functionals lead to a very
high pressure. Generalized gradient approximation density
functionals, like BLYP and PBE, produce higher dipole
moments when compared to dipole moments calculated with
hybrid functionals. Furthermore, the isotropic polarizabilities
are too large for most of these functionals. This is due to
the well-known tendency of these density functionals to
underestimate the HOMO–LUMO gap of molecular systems
which, in turn, results in an overestimation of the molecular
polarizability. Thus, the higher BLYP dipole moments and
polarizabilities lead to lower CNs.

Another consequence of the overstructuring and slow
diffusional dynamics of water when employing the BLYP
representation is that only a few exchanges of molecules
between the first and the second solvation shells are observed
on the time scale of the present simulations. This feature is
illustrated in Figure 3 (based on a trajectory extended to 19.2
ps). The initial configuration of the present simulation (pre-
equilibrated using classical MD) presents seven water
molecules in the first solvation shell of Ca2+. The seventh
water molecule leaves the shell shortly after the beginning
of the simulation. The resulting six-coordinated Ca2+

structure remains stable until 13 ps and dominates the RDFs
previously discussed (Figure 2; based on the initial 7.2 ps
of the extended simulation). At this point, however, another
water molecule enters the first solvation shell increasing again
the CN to seven. Note that the seven-coordinated structures
observed at the beginning and at the end of the simulation
show more significant fluctuations in the first shell Ca-O
distances (Figure 3) suggesting a destabilization of the
solvation structure.

The results of the classical MD simulations, performed in
order to investigate the box size dependence (via the
background charge) of the structural properties in simulations
of charged systems,25 are reported in Table 3. Calculations
with systems containing 8 to 150 water molecules and a
single Ca2+ ion (no Cl- counterion) have been performed
at constant water density. The results show an effect on the
coordination of Ca2+ for simulations with 50 water molecules
or less, where the CN is observed to increase with the box
size. This effect can be explained by the fact that the solvent
molecules around the reference ion are perturbed by the
periodic copies of the ion (undersolvation), the magnitude
of the effect decreasing with increasing box size. An
alternative (equivalent) interpretation is that the fraction of
the homogeneous background charge that is inside the ionic
volume (and thus reduces the field it exerts on the solvent)
decreases upon increasing the box volume. The Ca-O
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distance also increases along with the CN, due to the
repulsion of the water molecules entering the first solvation
shell. The same qualitative trend was found by Piquemal et
al.21 using a polarizable force field. In this study an increase
of the CN from 7.2 to 7.7 was observed upon increasing the
system size from 60 to 216 water molecules. However, this
observation may also have other causes, the present results
suggesting that finite-size effects on the solvation structure
are essentially negligible above 50 water molecules.

3.2. CPMD Simulations of a 2 m CaCl2 Aqueous
Solution. The Ca-O and Ca-H RDFs as well as the running
CNs obtained from the 7.2 ps CPMD simulations of a 2 m
CaCl2 (or Ca2+) solution at 320 K are displayed in Figure 4
for the five different systems A-E. All systems remained
close to the initial configuration during the entire simulation,
and the final configurations of the runs were topologically

identical to those displayed in Figure 1, justifying the
calculation of average properties for the species considered
(free ions, Ca2+-OH --Ca2+, Cl--Ca2+-Cl-, and Ca2+-Cl-)
based on the different simulations. The positions of the first
maxima in the Ca-O RDF range from 2.37 Å to 2.41 Å (to
be compared with 2.39 Å for the simulation of 1 m CaCl2,
Figure 2, and 2.45 Å for the previous simulation25 of 1 m
Ca2+). The first peaks corresponding to System A (2 m CaCl2

solution) and System E (2 m Ca2+ solution; free ions) nearly
exactly coincide, suggesting that the substitution of the
chloride counterions by the uniform background charge
density has little effect on first-shell solvation, at least when
the two ions behave as independently solvated entities (i.e.,
at large enough distance). Note that System B has a slightly
lower first peak and a second coordination shell shifted to
smaller distances compared to System A. System C shows
an even more pronounced decrease in the magnitude of the
first peak along with a slightly altered curve shape for the
second shell. Integrating the Ca-O RDFs up to the first
minimum leads to average first-shell CNs ranging from 4 to
7 for the individual ions in the five different systems (Table
3). This number is about six for Systems A, B, and E. System
C, representing the case of one seven-coordinated Ca2+ ion
and another forming two Ca2+-Cl- bonds (d ) 2.7–2.8 Å)
and presenting four water molecules in equatorial positions,
has the lowest RDF peak and an averaged CN of 5.5. The
same averaged CN is also found for System D, but the RDF
peak is higher and narrower, resulting from the smaller
Ca-O distances compared to those of System C. The Ca-H
radial distribution functions show the same trends (Figure
4, Table 3): almost no difference between Systems A, B,
and E (CN of about 12 for the H atoms) and a reduced
coordination for Systems C and D, due to the missing water
molecules in the first solvation shell. The averaged dipole

Figure 3. Time evolution of Ca-O distances along the Car–Parrinello simulation (19.2 ps; extended simulation) of aqueous
CaCl2 (1CaCl2 + 58H2O; 1 m CaCl2). Only distances corresponding to the water molecules that belong to the first solvation shell
at any time along the simulation are displayed.

Table 3. Coordination Number (CN) and First-Shell RDF
Peak Position for the Ca-O Distance (r [Ca-O]) for
Classical Simulations of Aqueous Ca2+ Solutions Involving
1 Ca2+ and the Indicated Number of Water Moleculesa

H2O CN r [Ca-O] (Å)

8 6.2 2.41
10 6.5 2.41
20 7.0 2.43
30 7.4 2.45
32 7.4 2.45
40 7.7 2.45
50 7.8 2.45
54 7.9 2.47
55 7.9 2.47
58 7.9 2.47
100 7.9 2.47
111 7.9 2.47
150 7.9 2.47

a At a constant effective water density of about 1 g.cm-3,
excluding the ion.
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moment calculated for the water molecule in the first
solvation shell are also reported in Table 3. The results show
two trends: first, the higher the CN, the lower the dipole
moment; second, the higher the concentration, the lower the
dipole moment. A probable explanation is that at higher
concentrations the Ca2+ hydration structure is weakened by
the perturbation caused by the neighboring Ca2+ and Cl-

ions and the water polarization is reduced, resulting in lower
dipole moments. A comparison of Systems A, C, and D with
System E shows that even at 2 m concentration there is no
significant influence of the chloride ions on the dipole
moment distributions.

The structures of all systems (Figure 1) were preserved
during the CPMD simulations. In System B, there was no
water exchange between the first and the second shells, and
the Ca2+-OH - distance remained at all times close to 2.39
Å. The coordination structure of the first ion in System C,
involving two axial Ca2+-Cl- bonds and four water mol-
ecules in equatorial positions was also stable. However, the
second ion was seven-coordinated, and the Ca-O distance
oscillations were found to be larger (in analogy with Figure

3, although no exchange of water involving the first solvation
shell was observed in this case).

Measurements on aqueous solutions of MgCl2 and CaCl2

showed an anomalous behavior of the osmotic coefficient
for CaCl2 (but not for MgCl2) at about 5 m concentration.49

This observation was suggested to result from the formation
of Ca2+-Cl- species (contact ion pairs) at high concentra-
tions. The formation of contact ion pairs has indeed been
observed in high temperature aqueous solutions,68–70 prob-
ably due to the reduced dielectric permittivity of water
(leading to enhanced ion association). However, EXAFS
studies suggested that Ca2+-OH2-Cl- species (solvent sepa-
rated ion pairs) rather than contact ion pairs were responsible
for the anomaly of the osmotic coefficient at 5 m concentra-
tion.13 Different molal concentrations appear to result in the
dominance of different species: solvent separated pairs at
6 m concentration and contact pairs at 9.2 m concentration.13

Average Ca-O distances were estimated to be 2.44 Å, and
average Ca-H distances to be 2.97 Å.13 Independent ND
experiments11 confirmed many of the findings of this EXAFS
study.13 Specifically: minimal changes in the nearest-
neighbor Ca-O correlation, a mean CN of about 7 for the
first hydration shell, and the absence of significant Ca2+-
Cl- contact ion pairing even at concentrations as high as
6.4 m.11 Chloride ions were proposed to be in the second
coordination shell (Ca2+ to Cl- distances of 4.6–5.6 Å) with
the dominance of Ca2+-OH2-Cl- solvent-separated pairs at
4 and 6.4 m. XRD experiments also suggested the dominance
of these species at 1 m and the simultaneous presence of
both Ca2+-OH2-Cl- (solvent separated) and Ca2+-Cl- (con-
tact) ion pairs at 4 and 6 m.8 XRD experiments reported
first-shell Ca-O distances in the range 2.43–2.46 Å, Ca2+-
Cl- distances of about 2.75 Å and a Cl--O distance of about
3.25 Å at 4–6 m.8 Recently, Megyes et al.7 performed XRD,
ND, and MD studies and discussed the relative abilities of
these methods to detect the ion pair formation. They point
out that XRD could detect ion pairs in the case of
concentrated solutions (more than 4 m), while ND required
very careful isotope substitution in order to be able to detect
ion pairs in solution. The MD results were in general
accordance with the XRD experimental findings.7

The present study suggests that the Ca2+-Cl- (contact) or
Ca2+-H2 O-Cl- (solvent separated) ion pairs may be present
even at lower concentrations (2 m), at least as transient
species stable on the 10 ps time scale probed by the present
simulations. However, their relative stabilities (i.e., equilib-
rium concentrations) cannot be evaluated based on such short
simulations. In addition, a particularly interesting result is
the observation of a Ca2+-OH --Ca2+ solvent-separated
species, instead of the Ca2+-H2 O-Ca2+ species. To the best
of our knowledge, XRD, EXAFS, and ND experiments show
no evidence for such a hydroxyl-separated ion pair. To
rationalize System B, we looked at the thermodynamics of
formation, deprotonation, and charge reduction of the
hydrates of doubly charged ions. One of the methods to
produce doubly charged metal ion hydrates is the clustering
method. This method is based on a charge reduction, which
can be viewed as a proton transfer reaction, i.e. M(H2O) 2+

+ H2Of M(OH) + + H3O + in the gas phase (M: divalent

Figure 4. Radial distribution functions (RDFs; g(r), solid lines)
and running coordination numbers (CNs, n(r), dashed lines)
corresponding to Car–Parrinello simulations (7.2 ps) of aque-
ous CaCl2 (Systems A-D; 2CaCl2 + 58H2O; 2 m CaCl2) or
Ca2+ (System E; 2Ca2+ + 62H2O): a) Ca-O and b) Ca-H:
System A (black), System B (red), System C (blue), System
D (green), System E (pink), see Computational Details.
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metal ion). Density functional theory cluster calculations have
shown that in the case of Ca2+, the charge reduction reaction
costs only 19.2 kcal/mol, while the competing reaction of
water loss would require 48.1 kcal/mol.71 Moreover, it has
been proposed that water, with a proton affinity of 165 kcal/
mol, is able to deprotonate Ca(H2O)2+. Because of the large
release of kinetic energy associated with the Coulombic
repulsion between the two positively charged ions pro-
duced by the charge reduction reaction, only bases whose
proton affinity is significantly larger than the proton
affinity of CaOH + (108 kcal/mol) will be able to induce
a proton transfer.72 A similar situation arises for the Al3+

ion where the kinetics of proton and water exchange in
aqueous Al3+ support five-coordinated Al(H2O)4OH2+ ions
as the predominant form of AlOH(aq)2+ under ambient
conditions.73

4. Conclusions

In the present study, six CPMD simulations of aqueous CaCl2

and Ca2+ solutions are reported.
The results of the simulation of a 1 m CaCl2 solution

(1CaCl2 + 58H2O) are consistent with those of a previous
calculation on a 1 m Ca2+ solution (1Ca2+ + 54H2O) using
the same methodology.25 Classical MD simulations of a
single Ca2+ ion in boxes of increasing sizes confirm that
beyond about 50 water molecules included in the computa-
tional box, the calculated structural properties (RDF peaks
and CN) become essentially independent of the box size.
The previous and present CPMD simulations support a first
shell RDF peak for the Ca-O distance at 2.39 Å and a CN
of 6 for the first solvation shell at a concentration of 1 m.
However, the time frame of the simulations (about 10 ps)
does not allow for a statistical sampling of water exchange
between first and second solvation shells, and it is likely that
the converged averaged CN using the present methodology
would be slightly larger than 6. The second solvation shell
of Ca2+ ranges from about 3.5 to 5.1 Å, and encompasses
about 13.2 water molecules on average. Localized orbital
analysis based on Wannier functions calculations shows a
polarization of water molecules in the first solvation shell,
which results in an increased dipole moment of 3.3 D
compared to that of the bulk water (about 3 D). The tests
performed in the present study thus indicate that there are
no artifacts from simulation protocols using uniform back-
ground charges and artificial periodicity at the experimental
concentration of 1 m. In former studies only the stability of
the results toward infinite dilution was considered. The present
results achieved with more strict parameters used in the
Car–Parrinello simulations give more credit to previous
simulations.25,32

Simulations of a 2 m CaCl2 solution (2CaCl2 + 58H2O)
or of a 2 m Ca2+ solution (2Ca2+ + 62H2O) starting from
free (i.e., widely separated) ions also produced very similar
results (among each other and compared to the 1 m case).
Recent combined XRD and ND experiments7 suggest CN
of 6.5 ( 0.2 and 6.2 ( 0.3 together with an average Ca-O
distance between 2.43 and 2.46 Å for 2.5 m solutions,
respectively. The slightly too low values for these quantities
in our simulations are most likely due to shortcomings in

the functional (BLYP) employed and not due to simulation
protocol parameters or system size dependencies, as was
recently21 suggested. Another source of discrepancies might
be that simulations performed at the experimental density
result in an effectively overpressurized sample when using
the BLYP functional. Finally, the simulations at 2 m CaCl2

solutions (2CaCl2 + 58H2O) starting from four different
configurations support the stability of Ca2+-Cl- (contact)
and Ca2+-OH2-Cl- (solvent-separated) ion pairs on the
10 ps time scale. This result is in agreement with recent
XRD8 and EXAFS13 experiments. The solvent-separated
cation pair was found to be present in the simulations in its
deprotonated form Ca2+-OH--Ca2+. To the best of our
knowledge, no such specie has been reported or suggested
based on experiment. Although the above species were found
to be stable on the 10 ps time scale, it is impossible to infer
their relative stability (i.e., their equilibrium concentrations)
from the present simulations. However, the simulations
suggest that at higher concentrations, a wider variety of
species may exist, and the study of these complex solutions
by computational means makes the explicit inclusion of
electronic structure necessary. On the other hand, is it also
clear from our simulations that the scope of such first
principles simulations is limited due to the restricted time
frame currently available.
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Abstract: We present a new method for generating global or semiglobal potential energy
surfaces in the presence of an electrostatic potential; the new method can be used to model
chemical reactions in solution or in an enzyme, nanocavity, or other chemical environment. The
method extends the multiconfiguration molecular mechanics method so that the energy depends
on the electrostatic potential at each atomic center. The charge distribution of the system can
also be calculated. We illustrate the method by applying it to the symmetric bimolecular reaction
Cl– + CH3Cl′ f ClCH3 + Cl′– in aqueous solution, where the potential energy information is
obtained by the combined density functional and molecular mechanical method, that is, by the
combined quantum mechanical and molecular mechanical method (QM/MM) with the QM level
being density functional theory. It is found that we can describe a semiglobal potential energy
surface in aqueous solution with electronic structure information obtained entirely in the gas
phase, including the linear and quadratic responses to variations in the electrostatic potential
distribution. The semiglobal potential energy surface calculated by the present method is in
good agreement with that calculated directly without any fitting.

1. Introduction

Combined quantum mechanical and molecular mechanical
(QM/MM) methods have provided powerful means for studying
chemical reactions in solution, enzymes, and solids.1–28 In these
approaches, the solute molecule or the reaction center involved
in the formation and breaking of chemical bonds is described
quantum mechanically, while the surroundings (e.g., solvent,
solid surface, or protein environment) are treated by using a
MM force field. When the system contains a large number of
atoms, a statistical sampling method such as molecular dynamics
(MD) or Monte Carlo simulation is required.

However, the high computational cost of ab initio or
density functional QM calculations prevents carrying out
QM/MM MD simulations with reliable accuracy and ad-
equate sampling. To overcome this difficulty, many more
approximate methods have been developed, but we can
mainly classify them into three types. In the first type of
method, a reaction path connecting the reactant and product

is first determined in limited dimensionality, for example,
in the gas phase or with nonquantal degrees of freedom
(corresponding to spectator atoms or a secondary zone)
excluded (in which case, the method is called QM-FE) or
frozen (in which case it is called QM/MM-FE). Then, the
free energy profile is obtained by free energy perturbation
calculations along the path with the QM coordinates and
electron density fixed.29–36 These methods assume that the
dynamics of the QM and MM subsystems are independent
of each other and that the QM subsystem needs to be treated
only in the quadratic region around the single uncoupled
path.37 Although several efficient algorithms for tracing the
reaction paths have been developed,30,33–35 this approach
sometimes has a difficulty that the reaction path is trapped
at one of the local minima of the potential energy surface
(PES) and not smoothly connected from the reactant to
product because there are many local minima on the MM
PES.32 Any single reaction path can deviate significantly
from paths that make an appreciable contribution in a
properly sampled thermal ensemble,38–48 even if the single* Corresponding author e-mail: truhlar@umn.edu.
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path is the minimum-free-energy path (MFEP) on the
potential of mean force (PMF) for a large subset of the
degrees of freedom. (The PMF is an averaged energy surface,
in particular, a free energy surface (FES). The true dynamics
involve an average over paths, not the optimized path on an
average surface, and even if the subset of the degrees of freedom
included in the potential of mean force were large enough, this
potential provides the full information needed to describe the
dynamics only if classical transition state theory applies with a
transmission coefficient of unity.) In addition, since the QM
coordinates and charge distribution are fixed during MD
simulations of this type, a significant part of the coupling
between the QM and MM regions is ignored.

In the second type of calculation, high-level electronic
structure methods combined with dielectric continuum
models49–54 or integral equation theories of solvation (such
as the reference interaction site model self-consistent field
(RISM-SCF) method55–58) are used to calculate the free
energy surfaces of chemical reactions in solution. Although
these methods do not need to sample the solvent degrees of
freedom, they cannot easily be applied to reactions with
inhomogeneous environments such as proteins, and further-
more they again yield only a preaveraged surface. (For many
purposes, it is an advantage to directly calculate the FES,
and it facilitates the calculation of equilibrium solvation
paths59,60 (ESPs), also called MFEPs,61 and transition state
theory rate constants,53 but the PES required for full real-
time dynamics can only be obtained from the FES by making
further approximations.62,63 Note that an ESP is a special
case of a MFEP in which the primary coordinates on which
the FES depends correspond to the coordinates of a solute
or a microsolvated solute, and the secondary subsystem that
is averaged corresponds to the solvent or the rest of the
solvent.)

In the third type of calculation (SE-MO/MM), one uses
proper free energy sampling of unaveraged motions, but due
to cost, one uses semiempirical molecular orbital (SE-MO)
methods such as Austin model 1 (AM1),64 parametrized model
3 (PM3),65 or self-consistent-charge density-functional tight
binding (SCC-DFTB)66,67 instead of high-level methods in the
QM electronic structure calculation. Semiempirical methods
require a much lower computational cost than ab initio or
density functional methods, and direct SE-MO/MM dynamics
simulations are feasible, so dynamical properties such as
transmission coefficients can be calculated straightforwardly.16,47

However, it is well-known that SE-MO is less reliable than ab
initio wave function theory and density functional theory.

Lu and Yang37 re-examined the QM/MM-FE method30,34

and summarized its chief approximations as (i) assuming that
the dynamics of the QM and MM subsystems are indepen-
dent of each other and (ii) assuming that the QM system is
confined to the quadratic region around the single uncoupled
path. They then proposed a new method, called QM/MM-
RPP where the PES and its electron density response
properties are expanded to second order along a reaction
path.37 The expanded potential and response properties
provide what may be called a reaction path potential (RPP),
which is a concept widely used in gas-phase dynamics.68–74

Yang and co-workers61 subsequently extended the theory to

optimize the reaction path on a FES; they call the resulting
theory the QM/MM minimum free-energy path (QM/MM-
MFEP) method. This method can treat the dynamical
coupling between the QM and MM regions with QM/MM
methods employing high-level QM in the vicinity of the
MFEP. However, a second-order expansion is valid only near
the origin of the expansion, and many expansion points are
required to calculate a global FES. A global PES or global
FES is needed to compute a broad distribution of reaction
paths such as, for example, those often involved in large-
curvature tunneling, which can make a significant contribu-
tion to the rate of hydrogen transfer reactions such as proton
transfer reactions. For this purpose, and because even for
the small-curvature tunneling case the ensemble of reaction
paths can be broad,47 it is desirable to develop a method to
describe the global PES with a minimum of high-level QM
input. This is the objective of the present study.

The multiconfiguration molecular mechanics (MCMM)
method will be the starting point for the present development.
MCMM has been successful in describing semiglobal
potential energy surfaces of gas-phase reactions and calculat-
ing the reaction rates with multidimensional tunneling
contributions.75–82 In the MCMM method, which is com-
pared elsewhere83,84 (with more than 30 references) to related
approaches, the Born–Oppenheimer potential energy at
geometry q is represented as the lowest eigenvalue of the 2
× 2 diabatic Hamiltonian matrix:

VMCMM(q)) (V11(q) V12(q)
V12(q) V22(q) ) (1)

where the diagonal elements, V11 and V22, are MM energy
functions that describe reactants and products, respectively.
The off-diagonal element, V12, and its derivatives are
determined to reproduce high-level electronic structure
calculations of the energy, gradient, and Hessian at some
reference points called Shepard points, and modified Shepard
interpolation85,86 is used to interpolate the PES between the
trust regions of the resulting set of second-order Taylor series.
In the case of reactions with more than one possible product,
MCMM would need to be extended, for example, to use a 3
× 3 matrix. The computational cost of using MCMM is much
lower than that of using high-level electronic structure
calculations directly.

In the present paper, we propose a method called elec-
trostatically embedded multiconfiguration molecular mechan-
ics (EE-MCMM). The new method is based on QM/MM
methodology, and it extends the original MCMM by adding
the electrostatic potential on each QM atom from the MM
regions to VMCMM. Taylor expansions are carried out with
respect to both the nuclear coordinates and the electrostatic
potentials at the nuclei; the coefficients of the Taylor series
are determined such that they reproduce high-level electronic
structure calculations at Shepard points. The collection of
the values of the external electrostatic potential at the
locations of the QM nuclei will be called the electrostatic
potential distribution. The EE-MCMM allows us to calculate
the PES in the presence of an external electrostatic potential.
The Taylor series can represent the electrostatic potential
due to the MM subsystem, and thus EE-MCMM can describe
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semiglobal PESs with moderate computational cost. Because
the method is efficient, we can use DF/MM, that is, QM/
MM with the QM level being density functional theory.

We illustrate the new method by application to the
symmetric bimolecular reaction C1– + CH3Cl′ f ClCH3 +
Cl′– in aqueous solution, a reaction that has been investigated
with various theoretical methods.29,87–108 We first create a
semiglobal PES in the gas phase by MCMM. The PES
generated by MCMM is compared to that calculated directly
without any fitting in a wide swath from the reactant through
the saddle point (SP) to the product. We also calculate the
variation of the gas-phase charge distribution (i.e., the partial
charges on the QM atoms) along the reaction path in the
gas phase by EE-MCMM, and we evaluate the response of
the gas-phase partial charges and energy to the electrostatic
potential distribution through second order in the Taylor
series. Then, we apply the EE-MCMM method to the same
reaction in solution, where we use the geometries and elec-
trostatic potentials calculated by the RISM-SCF method55–57

to compare full RISM-SCF calculations to results predicted
by EE-MCMM calculations with all the electrostatic poten-
tials at the Shepard points equal to zero. We employ the
same Shepard points as in the gas phase. After the reliability
of the EE-MCMM is checked, in the case that only the
electrostatic potential is changed, we compare the PES of
EE-MCMM calculations to full high-level calculations along
an aqueous-solution reaction path. Note that, when we talk
about the PES in a liquid-phase solution, we are referring to
the electrostatically embedded electronic energy (including
nuclear repulsion) of the QM subsystem. The variation of
the charge distribution along the reaction path in the aqueous
solution is also computed.

The organization of the article is as follows. In the next
section, we describe the theoretical methods employed here.
The computational details of the EE-MCMM calculations are
given in section 3. In section 4, we present the results of the
calculations, and the conclusions are summarized in section 5.

2. Theoretical Method

In QM/MM methods, the potential energy is represented as
the sum of three terms:

V total(R, RMM))V QM(R, RMM)+V QM/MM(R, RMM)+
V MM(R MM) (2)

where R and RMM stand for the collection of the coordinates
Ra and RA

MM of atoms in the QM and MM regions,
respectively, where a ) 1, 2, . . ., n1 and A ) 1, 2, . . ., n2.
Here, the first term is the electronic energy of the QM region,
VQM ) 〈Ψ|Ĥ0|Ψ〉, with Ψ being the electronic wave function
and Ĥ0 the electronic Hamiltonian (including nuclear repul-
sions) of the QM region. Note that, although Ĥ0 depends
only on R, Ψ depends on RMM as well as R through
VQM/MM. The last term in eq 2 is the MM potential energy
function. The QM/MM interaction term VQM/MM(R,RMM)
can be separated into three terms:

V QM/MM(R, RMM))Vele
QM/MM(R, RMM)+

VvdW
QM/MM(R, RMM)+Vval

QM/MM(R, RMM) (3)

where Vele
QM/MM, VvdW

QM/MM, and Vval
QM/MM are the elec-

trostatic, van der Waals, and valence interaction energies,
respectively. Of these three terms, only Vele

QM/MM depends
on Ψ. We define the sum of the Ψ-dependent terms, VQM

and Vele
QM/MM, as the electrostatically embedded QM energy:

V EEQM(R, RMM) ≡ V QM(R, RMM)+Vele
QM/MM(R, RMM)

(4)

The objective of the present study is to reproduce this
VEEQM(R,RMM) by the EE-MCMM method. Note that
V EEQM is called the PES.

We adopt a site–site representation of the QM/MM
electrostatic interaction:55,108–112

Vele
QM/MM(R, RMM)) 〈Ψ|Q̂TΦ|Ψ〉 (5)

where Q̂a is the population operator that generates the partial
charge Qa on the QM atomic site a:

Qa ) 〈Ψ|Q̂a|Ψ〉 (6)

and Φa is the electrostatic potential from the MM region:

Φa ) ∑
A)1

n2 QA
MM

|Ra -RA
MM|

(7)

where QA
MM is the effective charge of MM atom A. Note

that Q and Φ are n1-dimensional vectors, and Ra and RA
MM

are three-dimentional vectors. By adopting this representa-
tion, we can regard VEEQM as a function of R and Φ:

V EEQM(R, Φ)) 〈Ψ|Ĥ0 + Q̂TΦ|Ψ〉 (8)

where R is a 3n1-dimensional vector. At this stage, we can
extend the MCMM method75 to the EE-MCMM one
straightforwardly.

As in the MCMM method, the potential energy in EE-
MCMM is the lowest eigenvalue of a 2 × 2 diabatic
Hamiltonian matrix:

VEE-MCMM(q, Φ)) (V11(q, Φ) V12(q, Φ)
V12(q, Φ) V22(q, Φ) ) (9)

where we use nonredundant or redundant internal coordi-
nates113 q to represent the nuclear coordinates of the QM
subsystem. We evaluate VEE-MCMM and its derivatives in
terms of the internal coordinates q; then, we transform the
derivatives to the Cartesian coordinate system R. The strategy
to be developed involves evaluating a second-order Taylor
expression of VEE-MCMM around a set of interpolation nodes
(R(k), Φ(k)), where k ) 1, 2, . . ., N, then converting114 these
expansions, for given V11 and V22, to second-order expansions
of V12

2 around the interpolation nodes (called Shepard
points), and finally evaluating V12

2 at any arbitrary geometry
by Shepard interpolation85,86 of these expressions.

The lowest eigenvalue of eq 9 is given by

V EE-MCMM(q, Φ)) 1
2([V11(q, Φ)+V22(q, Φ)]-

{ [V11(q, Φ)-V22(q, Φ)]2 - 4V12(q, Φ)2}
1

2) (10)
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where V11(q,Φ) and V22(q,Φ) are analytic functions that
describe VEEQM in the regions of reactants and products.
V12(q,Φ) is evaluated by Shepard interpolation85,86 as fol-
lows:75

V12(q, Φ))∑
k)1

N

Wk(q, Φ)V12
′ (q, Φ;k) (11)

where Wk(q,Φ) is a normalized weight function:

[V12
′ (q, Φ;k)]2 ) [V12(q, Φ;k)]2 u(q, Φ;k) (12)

where

u(q, Φ;k)) { exp(-δ ⁄ [V12(q, Φ;k)]2) [V12(q, Φ;k)]2 > 0

0 [V12(q, Φ;k)]2e 0

(13)

and δ is a parameter (we used a very small value of δ, in
particular, (1 × 10-8)Eh

2, where Eh ≡ 1 hartree), and

[V12(q, Φ;k)]2 )D(k)[1+ (bq
(k)T

bΦ
(k)T)( ∆q(k)

∆Φ(k) )+
1
2

(∆q(k)T
∆Φ(k)T)(cqq

(k) cqΦ
(k)

cΦq
(k) cΦΦ

(k) )( ∆q(k)

∆Φ(k) )] (14)

and

∆q(k) ) q- q(k) (15)

and

∆Φ(k) )Φ-Φ(k) (16)

For k ) 1, 2, ..., N, the Taylor series coefficients, D(k), bq
(k),

bqq
(k), cq

(k), cqΦ
(k), cΦq

(k), and cΦΦ
(k), are determined to

reproduce VEEQM in eq 8 and its first and second derivatives
with respect to q and Φ at the Shepard point (q(k),Φ(k)). The
expressions for the elements D(k), bq

(k), and Cqq
(k) are given

in refs 75 and 82. The other elements are obtained
similarly. It is notable that EE-MCMM is the same as the
original MCMM in the case when Φ ) 0 and all Φ(k)

(for k ) 1, 2, ..., N) are also 0.
To implement the above procedure, we need the deriva-

tives of electronic structure calculations of V EEQM(R,Φ) with
respect to Φ in addition to those with respect to R. The first
derivative of V EEQM(R,Φ) with respect to a component of
Φ is given by110

∂V EEQM

∂Φa
) 〈Ψ|Q̂a|Ψ〉 )Qa (17)

Then, the second partial derivatives of V(q,Φ) are

∂
2V EEQM

∂Φa ∂ Φb
)

∂Qa

∂Φb
≡ �ab (18)

and

∂
2V EEQM

∂Φa ∂ Rb
)

∂Qa

∂Rb
≡κab (19)

These variables, xab and κab, are known as charge response
kernels (CRKs); they describe the QM charge fluctuations
due to the external electrostatic potential (which, in applica-

tions, will represent the electrostatic effect of the MM region)
and to the displacements of the QM atoms. The CRKs xab

and Kab were introduced by Morita and Kato110,111 and Lu
and Yang,37 respectively. Since these effects are usually not
included in MM potential energy functions, we define

Vii(q, Φ))Vii
MM(q)+Vii

CRK(q, Φ) (20)

where Vii
MM is the MM potential energy function and

Vii
CRK(q, Φ))Q(i)T∆Φ(i) + 1

2
∆Φ(i)T�(i)∆Φ(i)T +

∆Φ(i)K(i)∆q(i) (21)

where Q(i), K(i), and �(i) are calculated values at the reactant
and product, such that the partial charges and CRKs of EE-
MCMM agree with electronic structure calculation at the
reactant and product, respectively. (Note that the reactant
and product correspond to infinitely separated reagents and
are not included in the N Shepard points used in eq 11,
although we do include the precursor ion-dipole com-
plex and the successor ion-dipole complex.) Then, we can
calculate the EE-MCMM potential energy and its derivatives.
The calculation steps are the same as those in refs 75 and
82 except that Φ is added.

3. Computational Details

We used the MPW1K density functional115 for the electronic
structure calculations on the QM subsystem. The basis set
is 6-31G(d,p) for C and H atoms and 6-31+G(d,p) for Cl.
We refer to this mixed basis set as 6-31(+)G(d,p). Calcula-
tions carried out by direct dynamics, that is, without MCMM
or EE-MCMM, will be called direct or full.

Although there can be many choices for the population
operator Q̂a, we choose the operator according to Charge
Model 4 (CM4).116 The CM4 charge model is determined
from wave-function-dependent charges, the Mayer bond
order,117–119 and empirical parameters that are determined
to reproduce experimental or converged theoretical charge-
dependent observables:

Qa )Qa
0 +∑

b*a

Bab(Dab +CabBab) (22)

where Qa
0 is the partial atomic charge from either a Löwdin

population analysis (LPA) for nondiffuse basis sets or a
redistributed Löwdin population analysis (RLPA) for diffuse
basis sets;120 Bab is the Mayer bond order between atoms a
and b, and Dab and Cab are empirical parameters. The RLPA
charge is given by

Qa
0(RLPA))Qa

0(LPA)+ ZaYa∑
b*a

exp(-RaRab
2 )-

∑
b*a

ZbYb exp(-RbRab
2 ) (23)

where Za is an empirical parameter, Ya is the Löwdin
population that is associated with the diffuse basis functions
on atom a, and Ra is the diffuse orbital exponent on atom a.
The Fock matrix and gradient for the Hamiltonian in eq 8
with CM4 charges are given in refs 121 and 122, respectively.

Although the CM4 parameters are available for various
density functionals and basis sets, those for the MPW1K/
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6-31(+)G(d,p) mixed basis set are unavailable. The reason
why we adopted the mixed basis set is that the wave function
with MPW1K/6-31G+(d,p) in eq 8 was not converged for
Φ * 0 at some geometries. Note that the fixed gas-phase
density matrix at a geometry optimized in the gas phase could
be used for Bab in the previous study,122 while this procedure
is not appropriate for the present study because the purpose
of this study is to describe the global PES. We therefore
determined the empirical parameters Dab, Cab, and Za for
MPW1K/6-31(+)G(d,p) so as to reproduce the CM4 charges
obtained with MPW1K/6-31+G(d,p) in the gas phase at three
geometries: CH3Cl, the ion–molecule complex Cl– · · ·
CH3Cl, and the saddle point [Cl · · ·CH3 · · ·Cl]–. The opti-
mized parameters are Dab ) 0.02 for a C and H pair, Dab )
0.11 for a C and Cl pair, and Zab ) 0.11 for a Cl atom; the
other parameters are set to zero. The mean unsigned error
and root-mean-square error of the CM4 charges between
MPW1K/6-31+G(d,p) and MPW1K/6-31(+)G(d,p) at the
three geometries are 3.6 × 10-3 and 4.9 × 10-3, respec-
tively. We obtained the Hessian and CRKs by numerical
differentiations of the gradients and charges, respectively.

The gas-phase minimum energy path (MEP) was calcu-
lated by MCMM by the MC-TINKERATE program.123 In
these calculations, the MEP is the path of steepest descent
in mass-scaled coordinates124 from the saddle point, and the
reaction coordinate is the signed distance along the path.

We employed the RISM-SCF method55–57 to obtain the
geometry and electrostatic potential Φ on each atom from
the MM region in aqueous solution. The reason why we
adopted the RISM-SCF method in the present study is that
we wanted to check, as a first step, how well the EE-MCMM
method can reproduce VEEQM at various geometries and with
various electrostatic potential distributions. In the RISM-
SCF method, the equilibrium distribution of MM solvent
molecules can be calculated in a self-consistent manner. For
a fixed subsystem consisting of the solute with coordinates
R and averaging over a subsystem corresponding to the
solvent, the FES is approximated as the sum of VQM and
the excess chemical potential ∆µ coming from solute–solvent
interaction:57

F(R))V QM(R)+∆µ(R, Q) (24)

where ∆µ is the standard-state free energy of solvation of a
solute with fixed geometry R.59 Note that the FES is another
name for a multidimensional potential of mean force.125,126

This same quantity is also sometimes called127 the solvent-
modified potential energy of the system described by the
coordinates R. In the RISM integral equation theory, in
conjunction with the hyper-netted chain (HNC) closure
relation,128 ∆µ can be expressed as129

∆µ)-F
�∑

a

n1

∑
m

Nv ∫0

∞ [cam(ram)- 1
2

ham
2 (ram)+

1
2

cam(ram) ham(ram)]4πram
2 dram (25)

where ram is the distance between an atom a of the QM solute
molecule and an atom m of the MM solvent molecule, ram )
|Ra - Rm

MM|, Nv is the number of atoms contained in a
solvent molecule (Nv ) 3 for water), F is the density of the

solvent, � ) kBT with kB being the Boltzmann constant and
T the temperature, and cam and ham are the direct and total
correlation functions, respectively. Note that cam and ham can
be determined from the solute–solvent RISM equation and
the HNC closure relation:

h̃am(kam))F-1∑
b

n1

∑
n

Nv

w̃ab(kab) c̃bn(kbn) H̃nm(knm) (26)

and

ham(ram)) exp[-�uam(ram)+ ham(ram)- cam(ram)]- 1

(27)

where wab is the intramolecular correlation function calcu-
lated using the QM solute coordinates R and Ham is the pure
solvent site density pair correlation function calculated from
the solvent-solvent RISM equation; uam is the solute–solvent
interaction potential:

uam(ram))
QaQm

MM

ram
+ 4εam{( σam

ram
)12

- (σam

ram
)6} (28)

where εam and cam are the Lennard-Jones parameters and a
tilde represents a Fourier transform with wavenumber kam

as in

h̃am(kam)) 4π
kam

∫0

∞
ham(ram) ram sin(kamram) dram (29)

With this formalism, V QM and Q in eq 24 can be determined
by eq 8 with

Φa )F∑
m

Nv ∫0

∞ Qm
MM

ram
gam(ram) 4πram

2 dram (30)

where gam is the radial distribution function and

gam ≡ ham - 1 (31)

We can obtain the self-consistent free energy by iteratively
solving eqs 8, 26, and 27 until self-consistency is achieved.
The gradient of the free energy F can be calculated
analytically.57

We optimized the QM geometry on the FES with one or
two internal coordinates fixed and then compared V EEQM

from the direct calculation (eq 8) to V EE-MCMM from the
EE-MCMM one (eq 10) at the optimized coordinates and
electrostatic potentials. We also calculated the minimum
energy path124 on the FES, and we refer to this as the MFEP.
(Since the fixed system in our PMF is a solute, and the
averaged subsystem is the solvent, we could also call this
an ESP, but we use the more general term throughout the
remainder of this article.)

In the RISM-SCF calculation, the Lennard-Jones para-
meters for the solute atoms were taken from the AMBER
force field.130 The simple point charge model131 was adopted
for solvent–water. The temperature and density of solvent-
–water were 300 K and 1.0 g/cm,3 respectively. All of the
electronic structure calculations were performed by GAMESS-
PLUS132 based on the GAMESS quantum package,133 in
which we implemented the RISM-SCF routines.

In the MCMM and EE-MCMM calculations, we used a
modified MM3 force field134–136 for the diagonal elements
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Vii
MM in eq 20. For the bond stretching term, we replaced

the MM3 bond stretching function with a Morse137 potential.
The dissociation energy of the Morse function for C-Cl was
set equal to 83.7 kcal/mol, which was calculated by MPW1K/
6-31(+)G(d,p) and is in good agreement with the experi-
mental value, 83.8 kcal/mol.138 We also modified the van
der Waals energy term as in ref 81; we used the additional
parameter D ) 0.01 in the modified van der Waals energy
function. The other parameters are the same as those installed
in the TINKER program.139 We used the same functional
form for the normalized weight function as in the original
MCMM method75

Wk(q))
( 1
dk(q))4

∑
i)1

N

( 1
di(q))4

(32)

where dk denotes a generalized distance between q and q(k),
which is defined as

dk(q))�∑
j)1

jmax

(qj - qj
(k))2 (33)

We employed three bond distances (jmax + 3), C-Cl, C-Cl,
and Cl-Cl′, to calculate the generalized distance. We did
not make the weight function depend on Φ, although this is
possible in principle. All of the EE-MCMM calculations were
carried out by the MC-TINKER program,140 modified for
this purpose.

4. Results and Discussion

We applied the new EE-MCMM method to the reaction
Cl– + CH3Cl′ f ClCH3 + Cl′– in aqueous solution. The
free energy profile of this reaction is much different in
aqueous solution from that in the gas phase because the
solute–solvent electrostatic interaction at the TS, where
there is no dipole moment and the charge is more delo-
calized, is weaker than that at the reactant. Therefore, this
reaction is a good benchmark system for testing the
performance of theoretical methods, and consequently
various methods have been applied to calculate the free
energy profile of this reaction.29,87–108

For plotting purposes, we take the difference between two
C-Cl distances as the reaction coordinate:

z)RCCl′ -RCCl (34)

although the reaction paths along which z and other quantities
are computed are the gas-phase MEP and the aqueous-phase
MFEP. First, in Figure 1, we compare the gas-phase PES
and the aqueous-phase FES with the former evaluated along
the direct dynamics MEP and the latter along the direct
MFEP. For each curve, the zero of energy corresponds to
infinitely separated reagents.

In the gas phase, the ion-dipole complex is 9.7 kcal/mol
below reactants, and the potential energy barrier is 3.2 kcal/
mol above reactants; both values are in good agreement with
experimental values, 10.4141 and 2.5142 kcal/mol, respec-
tively. (The best estimate of the gas-phase potential energy

barrier is 3.1 kcal/mol.143) The ion-dipole complexes are
found in the present calculations to be located at z )
(1.378 Å.

In aqueous solution, the free energy barrier is calculated
to be 25.8 kcal/mol, which agrees well with the experimental
activation energy, 26.6 kcal/mol.144 In contrast to the gas-
phase reaction, the binding energy for the ion-dipole
complex is calculated to be very small. A very shallow
minimum (only -0.03 kcal/mol) was found in the FES at
z ) 1.744 Å. Therefore, a practical objective for the EE-
MCMM method is to reproduce the potential energy profile
for |z| e 1.8 Å.

4.1. Gas-Phase Reaction. We first constructed a semi-
global potential energy surface in the gas phase using the
original MCMM method. The objective region over which
we aimed to make this valid was from the reactant
ion-dipole complex through the SP to the product ion-dipole
complex including the concave side of the reaction path. Note
that the previous75–82 MCMM studies did not attempt to
converge the energy surface more than 3/4 of the way down
from the barrier, but here we consider the path all the way
down to the ion-dipole complexes. The placement of
Shepard points was based on the strategy in ref 76, but some
modifications were made, as described next.

The first MEP calculation was based on the MCMM-0
surface, which was constructed by electronic structure
information at three geometries: the precursor ion-dipole
complex, the SP, and the successor ion-dipole complex. (In
general, the notation75,76MCMM-N′ means that the Shepard
interpolation is based on Hessians at these three stationary
points plus N′ nonstationary points.) In the previous studies,
we assumed that the V11 and V22 MM force fields could
describe the PES of the local minima in the reactant and
product valleys. Therefore, V22 was zero for these two points,
which will here be called k ) N - 1 and k ) N, where N )
N′ + 3. In the present study, we used electronic structure
calculations to determine a Taylor series of V12

2 for all N
points.

Figure 1. Energy profiles of the Cl– + CH3Clf ClCH3 + Cl–

reaction: PES profile for gas-phase reaction along the direct
MEP (solid) and FES profile for the reaction in aqueous
solution along the direct MFEP calculated by RISM-SCF
(dashed). Both curves are relative to reactants (z ) -∞).
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In order to keep the symmetry of the reaction, the
nonstationary Shepard points were determined at the same
time for both the reactant and product sides. We define the
energy difference between the ion-dipole complex and
the SP as V*; this is 12.9 kcal/mol for MPW1K/6-
31(+)G(d,p) in the gas phase. The first and second supple-
mentary points (N′ ) 1, 2) were taken to be along the MEP
of the MCMM-0 run, lower than the SP by 1/4 of V*. The
calculation with these five Shepard points is called MCMM-2
because it involves two supplementary points. The third and
fourth supplementary points were taken to be along the MEP
of the MCMM-2 run, lower than the SP by 1/2 of V*. The
calculation with these seven Shepard points is called
MCMM-4. The fifth and sixth supplementary points were
taken to be along the MEP of the MCMM-4 run, lower than
the SP by 3/4 of V*. This calculation is called MCMM-6.
The seventh and eighth supplementary points were taken to
be along the MEP of the MCMM-6 run, lower than the SP
by 7/8 of V*. This calculation is called MCMM-8. We could
connect from the SP to the reactant and product ion-dipole
complex smoothly by the MCMM-8 MEP. To reproduce the
PES on the concave side of the reaction path, a ninth
supplementary point was taken to be located halfway in
Cartesian coordinates along a line that connects the reactant
ion-dipole complex with the product ion-dipole complex.
The calculation including this point is called MCMM-9.

Therefore, we used the electronic structure information at
12 Shepard points (if we consider the symmetry, the number
is reduced to seven). The locations of the Shepard points
and the direct MEP are shown in Figure 2. It is noted that
the purpose of this study is not to reduce the number of
Shepard points but to reproduce the semiglobal PES in
aqueous solution by EE-MCMM. It is possible to reduce the
number of Shepard points by adjusting the force field
parameters81 or changing the strategy for where the Shepard
points are placed.

The potential energy profiles of the direct, MCMM-0,
MCMM-4, and MCMM-8 gas-phase calculations are shown
in Figure 3. The ends of the curves correspond to the
precursor and successor ion-dipole complexes. The potential
energies of the MCMM-0 and MCMM-4 calculations notice-
ably differ from the direct one, while the MCMM-8 potential
curve is in good agreement with the direct one from the SP
all the way to the ion-dipole complexes.

We present equipotential contour plots of the gas-phase
PES determined in the MCMM-9 calculation in Figure 4a.
The length of the forming C-Cl bond and the breaking
C-Cl′ bond are taken as the axes. The remaining coordinates
are optimized by direct calculations. Equipotential contour
plots of the difference between the MCMM-9 and direct
PESs, V MCMM - V QM, are shown in Figure 4b. In a wide
swath from the precursor complex through the SP to the
successor complex, including the concave side of the reaction
path, the MCMM-9 PES agrees with the direct one within 1
kcal/mol. Therefore, this MCMM-9 PES is accurate enough
for dynamics calculations.

The matrix elements of the electronically diabatic Hamil-
tonian VMCMM and the lowest eigenvalue VMCMM are plotted
in Figure 5 along four distinguished paths: the path with RCCl

+ RCCl′ ) 4.6 Å (Figure 5a) which goes through the SP, the
path with RCCl + RCCl′ ) 5.0 Å (Figure 5b) which goes
through the reactant and product ion-dipole complexes, the
path with RCCl ) 1.8 Å which goes through the reactant
ion-dipole complex (Figure 5c), and the path with RCCl )
2.3 Å which goes through the SP (Figure 5d). The remaining
coordinates are optimized by direct calculations. The matrix
element V12 has a maximum at the SP and then decreases
toward the reactant and product ion-dipole complexes.

To investigate the variation of the partial atomic charges
along the reaction path, we carried out an EE-MCMM-9
calculation using the electronic structure information at the
same Shepard points as those of MCMM-9. This means that
all Φa

(k) values are zero for this EE-MCMM calculation.
The partial charges can be obtained by calculating the

Figure 2. Gas-phase calculations: two-dimensional repre-
sentation of the direct MEP and the location of Shepard points
for the MCMM-9 calculation. Filled circles are stationary
points, and open circles are other Shepard points.

Figure 3. Gas-phase potential energy profiles along the MEP
as a function of the reaction coordinate z: direct (solid line),
MCMM-0 (dashed line), MCMM-4 (dotted line), and MCMM-8
(dot-dashed line). The dot-dashed line is almost completely
hidden by the solid one. All curves are plotted for the direct
MEP.
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derivative of V EE-MCMM in eq 10 with respect to Φ as in eq
17, which yields

Qa )
∂V EE-MCMM

∂Φa
) 1

2{ ∂V11

∂Φa
+

∂V22

∂Φa
-

[4V12

∂V12

∂Φa
+ [V11 -V22][∂V11

∂Φa
-

∂V22

∂Φa
]

[(V11 -V22)2 + 4V12]
1⁄2 ]} (35)

Note that the gas-phase charges correspond to evaluating this
derivative with all Φa ) 0. The partial charges on each atom
in the EE-MCMM-9 and direct calculations along each MEP
are presented in Figure 6. By construction, the partial charges
obtained by eqs 17 and 35 agree exactly at Shepard points,
but the figure shows that the changes of the partial charges

in the MCMM-9 calculation are quite similar to those in the
direct calculation along the whole reaction path. In both
cases, the charges of two Cl atoms change significantly along
the MEP.

4.2. Reaction in Aqueous Solution. Now we consider
the PES for the reaction in aqueous solution; in particular,
we will compare V EE-MCMM to the electrostatically embedded
QM energy V EEQM.

When we apply the EE-MCMM method to a reaction in
the condensed phase, where Φ * 0, we have to consider
how the locations of the Shepard points (q(k),Φ(k)) are
determined. In general, it is desirable to select the Shepard
points so as to make ∆q(k) and ∆Φ(k) as small as possible
during the statistical sampling in the simulation of the target
QM/MM system because EE-MCMM is based on second-
order expansions. Several strategies can be considered. One
of the strategies, in analogy to the QM/MM-MFEP procedure
of Yang and co-workers,61 is to take the Shepard points along
the QM/MM MFEP determined from the potential of mean
force in the QM degrees of freedom. In this scheme, the
QM geometry and charge distribution are fixed during a MD
simulation, then the QM geometry is optimized using the
average electrostatic potential and force from the MM atoms;
this procedure is repeated until self-consistency between the
QM and MM regions is achieved. If the ensemble of reaction
paths was restricted to paths that lie close to the MFEP, then
this kind of MFEP procedure would always make ∆q(k) and
∆Φ(k) small. A drawback to this scheme is that the
computational cost of the MFEP calculation is not low. If
we were to take supplementary Shepard points along the
MFEP of a previous EE-MCMM calculation with fewer
Shepard points (as was done in the original MCMM method),
hundreds of MD simulation runs would be required, which
is undesirable. Furthermore, one expects significant contribu-
tions to the reaction rates from paths that differ appreciably
from the MFEP.38–48

Therefore, we adopted a different strategy for the location
of the Shepard points in condensed-phase reactions. We first
select Shepard points for a gas-phase reaction in the same
way as in the original MCMM method, and then these
Shepard points are applied to the reaction in aqueous solution.
In other words, all of the Shepard points have Φ(k) ) 0.
This means that, as far as the terms relating to the
electrostatic potential distribution are concerned, the Taylor
series is reduced to a Maclaurin series, orsstated another
wayswe are using only gas-phase information as input to
the Shepard interpolation for the aqueous-phase calculations.
We adopted this simple strategy because it has been shown111

that the linear response relation between Q and Φ (see
below), that is, a second-order expansion of V EEQM with
respect to Φ, generally holds well even if the components
of ∆Φ become quite large. On the basis of this result, we
first generated a semiglobal PES in the gas phase, and then
we applied it to the reaction in aqueous solution. It is noted
that the computational cost of this strategy is much lower
than using a MFEP calculation since only QM gas-phase
calculations on the solute are required during the stage of
finding the reaction path. Although the present reaction was
treated using only eight supplementary points near the gas-

Figure 4. (a) Equipotential contours of the gas-phase PES
calculated by MCMM-9. Contour labels are in kcal/mol.
Countours are spaced from –8 to +8 by 2 kcal/mol. The zero
of energy is at infinitely separated reagents. (b) Equipotential
contours of the difference between the gas-phase PESs
calculated by the MCMM-9 and direct methods. Contours are
spaced from –5 to +5 by 2 kcal/mol.
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phase reaction path and one point off the path, other reactions
may require more points off the reaction path. On the other
hand, one might be able to use fewer points near the reaction
path if their locations are optimized. Further experience will
be helpful in understanding these issues.

We first considered the case of ∆q ) 0 and ∆Φ * 0 to
check the reliability. We used the RISM-SCF method to
calculate the electrostatic potential on each atom of the solute
in aqueous solution at the gas-phase precursor ion-dipole
complex and the gas-phase SP. The calculated electrostatic

potential distribution is given in Table 1. The electrostatic
potential on the Cl ion is larger than those on other atoms at
the gas-phase ion-dipole complex because Cl– has a
considerable localized negative charge. In contrast, the
electrostatic potential distribution is more uniform at the SP
because the charge is more delocalized. We then compared
the electrostatically embedded energies and charges of EE-
MCMM (calculated with the Φ of Table 1) to those of a
direct calculation. We also compared the results with those
calculated by the original CRK method,110,111

Q(CRK))Q0 + �Φ (36)

V EEQM(CRK))V0
QM +Q0

TΦ+ 1
2

ΦT�Φ (37)

where Q0 are the charges at Φ ) 0, and V0
QM is the value

of 〈Ψ0|Ĥ0|Ψ0〉 , where Ψ0 is the gas-phase wave function.
The difference between 〈Ψ|Ĥ0|Ψ〉 and 〈Ψ0|Ĥ0|Ψ0〉 is ac-
counted for by using the coefficient of 1/2 in the last term
of eq 37. Note that the original CRK method and our method

Figure 5. The matrix elements of the electronically diabatic Hamiltonian V MCMM and the lowest eigenvalue V MCMM along the
paths with (a) RCCl + RCCl′ ) 4.6 Å, (b) RCCl + RCCl′ ) 5.0 Å, (c) RCCl ) 1.8 Å, and (d) RCCl ) 2.3 Å.

Figure 6. Partial charge on each atom in the EE-MCMM-9
(left) and direct (right) calculations: partial charge on C (solid
line), H (dashed line), Cl′ (dotted line), and Cl (dot-dashed
line).

Table 1. Electrostatic Potential (in Volts) on Each Atom in
Aqueous Solution by RISM-SCF at the Gas-Phase
Ion-Dipole Complex and the Gas-Phase Saddle Point

ion-dipole complex saddle point

ΦC 4.467 4.753
ΦH 4.596 4.611
ΦCl′ 3.552 5.211
ΦCl 7.048 5.211
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differ in the way that the expansion is carried out. The
original CRK expands V EEQM itself, while our method
expands V12

2 by using eq 14. The results are shown in Table
2. The aqueous charge distributions obtained by all of the
methods in Table 2 are more polarized than the gas-phase
charge distribution because of the strong solute–solvent
interaction. Both the degrees of charge polarization and the
electrostatically embedded energy change upon solution are
quite similar in all three methods; the differences are 0.1
kcal/mol or less.

We next calculated the profile of V EE-MCMM by EE-
MCMM-9 along the direct MFEP that was obtained by the
RISM-SCF method. The result is presented in Figure 7. The
energy is relative to separated reactants in the gas phase.
Both edges of the potential energy profiles correspond to
the shallow minima of the free energy profile obtained by
the RISM-SCF method. The energy difference between the
SP and ion-dipole complex is very large compared with
gas-phase reaction because of the difference of the solute–
solvent interaction. The figure shows that the potential energy
profile of EE-MCMM-9 is in very good agreement with that
of the direct calculation; in fact, the two curves are essentially
on top of one another. We computed equipotential contour
plots of V EE-MCMM as determined in the EE-MCMM-9

calculation; these are shown in Figure 8a. The forming C-Cl
bond and the breaking C-Cl′ bond are taken as the axes.
The remaining coordinates and the electrostatic potential
distribution are optimized by RISM-SCF calculations. Al-
though V EE-MCMM has a minimum in Figure 8a when both
C-Cl distances are increased, neither Vtotal nor F has a
minimum in this region. Equipotential contour plots of
the difference between the EE-MCMM-9 and direct PESs,
V EE-MCMM - VEEQM, are shown in Figure 8b. As in the case
of the gas-phase reaction, the EE-MCMM-9 PES agrees with
the direct one within 1 kcal/mol in a wide swath from the
reactant through the SP to the product, including the concave
side of the reaction path. It is notable that we only used
electronic structure information of the gas-phase reaction.
Nevertheless, we could reproduce the PES for the condensed-
phase reaction.

To investigate the effects of the electrostatic potential Φ
on the matrix elements of the electronically diabatic Hamil-
tonian V EE-MCMM, we computed these matrix elements along
the distinguished path with RCCl + RCCl′ ) 4.8 Å for the

Table 2. Partial Charges (in Units of e) and
Electrostatically Embedded QM Energy (in kcal/mol) in the
Gas Phase and in Aqueous Solution

gas phase solution phase

direct direct EE-MCMM Original CRK

Ion-Dipole Complexa

QC -0.1447 -0.1570 -0.1558 -0.1480
QH 0.1157 0.1117 0.1109 0.1110
QCr -0.2559 -0.2036 -0.2072 -0.2093
QCl -0.9425 -0.9744 -0.9699 -0.9751
V EEQM -9.67 -163.82 -163.72 -163.76

Saddle Pointa

QC -0.0260 -0.0157 -0.0153 -0.0155
QH 0.1185 0.1265 0.1264 0.1263
QCl () QCl′) -0.6448 -0.6820 -0.6819 -0.6817
V EEQM 3.19 -121.86 -121.85 -121.85

a Gas-phase geometries.

Figure 7. Potential energy profiles along the direct aqueous-
phase MFEP: direct RISM-SCF (solid line); EE-MCMM-9
(dashed line). Figure 8. (a) Equipotential contours of the PES calculated

by EE-MCMM-9. Contour labels are in kcal/mol. Countours
are spaced from –170 to –110 by 10 kcal/mol. (b) Equipo-
tential contours of the difference between the PESs calculated
by EE-MCMM-9 and direct methods. Countours are spaced
from –5 to +5 by 2 kcal/mol.
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following four sets of the electronic potential distributions:
Φ ) 0 (gas phase), Φ ) ΦIDC, Φ ) ΦSP, and Φ ) 1/2ΦSP,
where ΦIDC and ΦSP are the electrostatic potential distribu-
tion calculated by RISM-SCF at the gas-phase precursor
ion-dipole complex and the gas-phase SP (Table 1). The
other remaining coordinates are optimized by direct gas-
phase calculations. The results are shown in Figure 9. The
diagonal elements V11 and V22 are strongly stabilized by the
external electrostatic potential because the system has
negative charge, and all of the values of the electrostatic
potential are positive. When Φ ) ΦIDC (Figure 9b), V11 is
more stabilized than V12 because ΦIDC is favorable to V11.
Although the effect of the electrostatic potential on V12 is
smaller than the effects on V11 and V12, the profile of V12

with Φ ) ΦIDC is asymmetric. Therefore, it is important to
consider the dependence of V12 on external electrostatic
potential Φ.

The charge distribution of the QM subsystem is important
in QM/MM calculations since it controls the interaction with
the MM subsystem. The partial charge on each atom in the
EE-MCMM-9 and direct calculations along the MFEP
obtained by the RISM-SCF method is presented in Figure
10. Although there is a slight difference at |z| > 1.5 Å, the
results of the two calculations are quite similar. Note that
no Shepard points were placed at |z| > 1.378 Å because the
ion-dipole complexes are located at |z| ) 1.378 Å in the
gas phase. If Shepard points are added in such regions,
the results will be improved.

5. Conclusion

In the present work, we proposed a method for generating a
potential energy function for a system in the presence of an
electrostatic potential. For this purpose, we extended the
MCMM method so that the potential energy depends on the
electrostatic potential acting on the atomic centers of a
subsystem, which is called the QM subsystem. The resulting
energy representation can be used to describe PESs defined

Figure 9. The matrix elements of the electronically diabatic Hamiltonian V EE-MCMM and the lowest eigenvalue V EE-MCMM along
the path with RCCl + RCCl′ ) 4.8 Å for the electrostatic potential distributions with (a) Φ ) 0, (b) Φ ) ΦIDC, (c) Φ ) ΦSP, and
(d) Φ ) 1/2(ΦSP).

Figure 10. Partial charge on each atom in the EE-MCMM-9
(left) and direct calculations (right) along the MFEP obtained
by the RISM-SCF method: partial charge on C (solid line), H
(dashed line), Cl′ (dotted line), and Cl (dot-dashed line).
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by a QM/MM method. The charge distribution of the QM
subsystem can be obtained by calculating the derivative of
the potential energy with respect to the electrostatic potential
distribution.

We applied the present method to the degenerate rear-
rangement Cl– + CH3Cl′ f ClCH3 + Cl′– in aqueous
solution. We first generated the semiglobal PES in the gas
phase by the original MCMM method, and then we generated
it in aqueous solution using the same electronic structure
information augmented by a Maclaurin series with respect
to the electrostatic potential distribution. The calculated
potential energy in aqueous solution is very close to that
calculated directly without any fitting. The charge distribution
in aqueous solution as calculated by the present method is
also found to be quite similar to that obtained directly. This
shows that we can generate a semiglobal PES in the
condensed phase using only electronic structure information
in the gas phase. From the perspective of computational cost,
it is very efficient that we can use only gas-phase data to
determine the location of the Shepard points (in both
coordinate space and electrostatic potential distribution space)
when we apply the present method to reactions in the
condensed phase.

On the basis of the present results, we conclude that the
new EE-MCMM method is a very powerful tool for studying
reactions in the condensed phase. Although we did not
present the results of actual MD simulations here, such
applications are now straightforward. An application of the
present method to the MD simulation of a condensed-phase
reaction is now in progress.
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Abstract: We present a new electronic structure approximation called Tight Binding Configu-
ration Interaction. It uses a tight-binding Hamiltonian to obtain orbitals that are used in a
configuration interaction calculation that includes explicit charge interactions. This new method
is better capable of predicting energies, ionization potentials, and fragmentation charges than
the Wolfsberg-Helmholz Tight-Binding and Many-Body Tight-Binding models reported earlier
(Staszewska, G.; Staszewski, P.; Schultz, N. E.; Truhlar, D. Phys. Rev. B 2005, 71, 045423).
The method is illustrated for clusters and nanoparticles containing aluminum.

1. Introduction

Tight-binding (TB) theory1–3 (also called extended Hückel
theory) is well-suited to modeling the electronic structure
and potential energy surfaces of materials and nanoparticles
in that it incorporates quantum mechanical effects with a
minimum of computational expense. It is, however, a very
approximate theory and can only provide useful accuracy if
the matrix elements are empirically parametrized. It is well-
known in a variety of contexts that empirically parametrized
theories work best when the functional or operational form
of the theory incorporates the dominant physical interactions.
Tight-binding theory has the functional form of a one-
electron eigenvalue problem; this class of functional forms
can be derived4,5 from Kohn-Sham density functional
theory6 by assuming that the densities of the atoms of a given
atomic number are all close to a reference density for that
atomic number. This assumption breaks down for many
problems, in particular those involving bond breaking and

formation, variable coordination numbers, multiple oxidation
states, and polar or ionic bonds. Thus, the question arises of
whether there might be other functional or operational forms
that are only slightly more computationally expensive but
better incorporate the atomic interactions.

Kohn-Sham theory itself has the form of a pseudoeigen-
value problem in that the Kohn-Sham matrix to be diago-
nalized depends on the occupied orbitals, which in turn
depend on the field produced by the orbital eigenvectors.
This kind of problem can be solved by an iterative process,
leading to the familiar self-consistent field problem.7–9

Various versions of tight binding with occupancy-dependent
terms in the Hamiltonian (e.g., iterative extended Hückel
theory,10 the Anderson-Newns model,11 the Hubbard
model,12 the Grimley-Pisani model,13 self-consistent charge
density functional tight binding (SCC-DFTB),14,15 and the
generalized Hubbard model16–18) have been proposed, and
some of these models have enjoyed considerable success.
Nonetheless, occupancy-dependent Hamiltonians require an
iterative method for their solution, and an iterative process
raises the cost and complexity of the method, especially if
one is computing the gradients and/or Hessians19 for dynam-
ics. Furthermore, there is the added inconvenience that one
must develop computational strategies for dealing with
unstable cases where the iterative process diverges, stalls,
or oscillates. The present article is devoted to trying to solve
some of the same issues that motivated iterative tight-binding
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schemes, especially finding the optimum charge distribution,
but with noniterative methods.

In general, tight binding has almost always been consid-
ered a way to approximate a single-configuration wave
function, such as the ones in Hartree-Fock,20–24 Hartree-
Fock-Slater,25 Kohn-Sham,6 or dynamical Hartree-Fock26

theories. One can make Kohn-Sham theory more accurate
by improving the one-electron Hamiltonian (by using better
density functionals), and such an approach is analogous in
some respects to better parametrization of the tight-binding
Hamiltonian, just as the iterative refinement of the Kohn-
Sham Hamiltonian is the direct analogue of the iterative tight-
binding methods discussed above. However, the more
traditional approach in quantum chemistry has been config-
uration interaction (CI), either by variational theory,27 by
perturbation (or many-body) theory,28,29 or by coupled cluster
theory;29 in these theories, the wave function is a linear
combination of configuration state functions (CSFs), each
built from Hartree-Fock orbitals (as in the so-called post-
Hartree-Fock correlation methods30), from non-self-con-
sistent orbitals (as in valence bond theory31,32), or from
Kohn-Sham orbitals.33 This suggested to us that one might
improve tight-binding theory by using the tight-binding
orbitals to perform an approximate configuration interaction
calculation. We propose and test such an approach in the
present article.

The main reason why one usually prefers using self-
consistent-field orbitals for configuration interaction is that
it makes the matrix elements connecting the self-consistent
configurations to single excitations all equal to zero.34–38

Since we are using tight-binding orbitals, which are not self-
consistent, we will include single excitations. In fact, the
single excitations are the ones most responsible for charge
redistribution. Since our main goal is to include charge
redistribution effects without resorting to iterative methods,
the single excitations are the key element of the new method.

A second motivation for the development of the new
method, called tight-binding configuration interaction (TBCI),
is that single-configuration methods like tight-binding often
lead to incorrect electron distributions upon bond breaking.39,40

The new method is designed to improve this so that the new
tight-binding method is more reasonable in describing bond-
breaking dynamical processes.

Aluminum clusters and nanoparticles were chosen as the
initial application for evaluating the new method. Recently,
we have devoted considerable effort to studying these
systems.39,41–48 Analytical potential energy functions (PEFs)
were developed that accurately predict cluster energies.42,45

A number of TB and many-body TB (MBTB) models were
also parametrized.39,44,46 In addition, when potentials based
on these methods were used, the properties of aluminum were
explored by molecular dynamics and Monte Carlo calcula-
tions.49,50 There are a number of reasons for the interest in
this metal. It is of technological and industrial value as a
lightweight, rust-resistant metal, and it is an ingredient for
high-energy fuels (e.g., as a component of solid rocket
propellant) and potentially as a hydrogen-storage medium.51

The use of aluminum nanoparticles, instead of bulk metal,
is expected to enhance the latter two properties.51–54 Metal

nanoparticles provide a challenging test for approximate
electronic structure theories because it has been demonstrated
that the properties of nanometer-sized particles can depend
dramatically on size, occasionally in an unpredictable man-
ner, as compared to those of bulk metal.55–65

2. Theory

First, we present the theory behind the new electronic
structure method for a system involving only a single
element. Afterward, the extension of the method to hetero-
atomic systems is described.

The CI wave function is written as

Ψ)∑
j

CjΦj (1)

where Cj is a CI coefficient and Φj is a CSF. We follow the
common practice in TB of using the frozen-core approxima-
tion and thus consider only the valence electrons. Each CSF
is a Hartree product:

Φj )�1
o

1
(j)
�2

o
2
(j)
· · ·�M

o
M
(j)

(2)

where �k is an orbital, ok
(j) is the occupancy number (0, 1, or

2) of orbital k in CSF j, and M is the number of orbitals.
The sum of the occupancy numbers in any CSF equals the
number of valence electrons:

Nval )∑
k

ok
(j) (3)

The one-electron density matrix of the CI wave function
is approximated as

Pmn )∑
j

|Cj|
2Pmn

(j) (4)

where Pmn
(j) is the density matrix of CSF j. The total CI

energy E is the lowest eigenvalue of the CI matrix. Rather
than construct and diagonalize the full CI matrix, which is
far too large even if we knew or had approximations for the
off-diagonal elements, the lowest eigenvalue is approximated
using a weighted version of the degeneracy-corrected
perturbation theory66 energy:

E)∑
j

|Cj|
2Γj (5)

Γj )Ej +
1
2∑i

[(Ei -Ej)- √(Ei -Ej)2 + 4�ij
2 ] (6)

where Ej is the energy of CSF j, and �ij is the coupling
element between CSFs i and j, when i * j, and is a constant
called the diagonal coupling constant when i ) j (the i ) j
term is included in the sum to ensure size extensivity even
in the presence of degeneracies). This form (eqs 5 and 6)
was chosen for several reasons: it leads to a size-consistent
method, it gives the correct answer for a 2 × 2 CI matrix
with known off-diagonal elements, the ground-state energy
is below the lowest CSF energy, and the ground-state energy
approaches the energy of the lowest CSF in the limit of well-
separated CSF energies.

In lieu of eq 5 for determining the TBCI energy, one could
consider using
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E)∑
j

|Cj|
2Ej (7)

However, this equation will lead to total energies that are
higher than that of the lowest-energy CSF, whereas eq 5 will
always give total energies that, as one finds in a variational
calculation, are lower. Another possible formula for the total
energy is based on the free energy formula:

E)-∆ ln[∑
j

exp(-Ej

∆)] (8)

Equation 8 gives overall energies that are lower than that of
the lowest-energy CSF, but it is not size-extensive. We found
that the combination of eqs 5 and 24 (Vide infra) is the most
satisfactory formula for the configuration interaction energy,
and we did not use eqs 7 or 8.

The remaining tasks are to develop approximations for
|Cj|2, �ij, and Ej.

The molecular orbitals (MOs) are expanded in a minimal
basis set {ηa} of atomic orbitals:

�k )∑
a

cakηa (9)

The atomic orbitals are assumed to be orthonormal. The
orbital coefficients cak are obtained by solving the tight-
binding orbital eigenvalue equations, given in matrix form
by

Hc) εc (10)

where H is the M × M tight-binding Hamiltionian matrix
(i.e., the one-electron Hamiltonian) with elements Hab, c is
an M × M matrix in which each column is an eigenvector,
and ε is a diagonal matrix of orbital eigenvalues. The
elements of c are the orbital coefficients in eq 9. On the basis
of previous work,39,44,46 we will assume zero differential
overlap (ZDO)67,68 so that the density matrix of CSF j in
the atomic orbital representation becomes

Pab
(j) ) δab∑

k

MO

ok
(j)| cak|

2 (11)

The ZDO approximation is the reason that the atomic-orbital
overlap matrix is neglected in eq 10. In a previous work on
TB, it was found that neglecting the overlap gave a more
balanced set of approximations.46

The energy of a given CSF is given by

Ej )Eval
(j) +ECB

(j) +Vrep +E(0) (12)

The valence energy, Eval
(j) , is given by

Eval
(j) )∑

k

ok
(j)εk (13)

In some versions39,46,69 of TB, the valence energy contains
an additional term, δok,2µpenalty, which introduces a penalty
(upenalty) for two electrons occupying the same orbital. This
allows for ground states that are not singlets or doublets and
for homolytic bond dissociations of singlet molecules. One
motivation behind developing the TBCI model is to find a
more satisfactory means of allowing for these possibilities.

In eq 12, Vrep, is the core-core repulsion, which is assumed
to be a function of geometry but not of the CSF (i.e., index
j). It is modeled in the present work by a pairwise-additive
potential:

Vrep ) κ∑
A

∑
B>A

exp(-τ RAB) (14)

where A and B are atom labels, and κ and τ are empirical
parameters. This form is similar to that used in our previous
TB work39 where we also included a prefactor (RAB)-uAB with
uAB being a positive constant parameter; this prefactor was
omitted here since the optimized uAB tended to be small, and
the prefactor was found in preliminary work to have an
insignificant effect. E(0) is a constant, independent of both
geometry and CSF, that determines the zero of energy. The
charge balance (CB) energy, ECB

(j) , is primarily responsible
for describing the electrostatics in the system. In order to
determine Ej, what remains is to define H, ECB

(j) , and E(0).
The Hamiltonian H is modeled by the Wolfsberg-Helmholz

approximation.39,70 The diagonal elements are

Haa )-UZ
l (15)

where UZ
l is a parameter, different for each type of orbital.

Note that these matrix elements depend on the atomic number
Z and the orbital angular momentum quantum number l. In
our previously published TB models, UZ

l were taken as
valence-state ionization potentials (VSIP or IZ

l ).39 In TBCI,
because of the CI treatment and CB term, one cannot make
the same assumption, and the equations used for assigning
UZ

l are given later in this section.
The off-diagonal elements, called either transfer or hopping

integrals, are39,70

Hab )Klalbm

Haa +Hbb

2
Sab (16)

where Sab is the atomic-orbital overlap integral and Kliljm is
an empirical constant that depends on the orbital angular
momenta li and angular momentum projection quantum
number m on the axis connecting atoms A and B. This
approximation was initially proposed by Mulliken71 and has
been used by Hoffmann2,72–75 and Wolfsberg and Helmholz70

and in the TB and MBTB models for aluminum.39 We take
each basis function ηa to be a single Slater-type orbital.76

Then, the overlap matrix elements can be readily calculated.
For example, when the orbital exponents on the two centers
are equal, one can use the expressions determined by Jones77

Sab )P6(� RAB) exp(-� RAB) (17)

where P6(x) is a sixth-order polynomial, A and B label the
atoms on which orbitals a and b are centered, RAB is the
interatomic distance, and � is the Slater-orbital exponential
parameter. This expression is sufficient for Al because
fortuitously the s- and p-exponential parameters, as deter-
mined in the minimal basis set Hartree-Fock calculations
by Clementi and Raimondi,78 happen to be nearly the same;
for the s-p overlap, the average of the two exponential
parameters is used, in a manner similar to that of our previous
work.39 Jones has also provided equations for the overlap
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for the more general case where the two exponential
parameters (�a and �b) are different.79

As in previous work on TB,39 various models can be
formulated by using different sets of Kliljm and �liljm. For
aluminum, there are four relevant combinations of li, lj, and
m: ssσ, spσ (equivalent to psσ), ppσ, and ppπ. One could
optimize either a single Kliljm parameter for all four combina-
tions (the Wolfsberg-Helmholz or WH model) or separate
Kliljm parameters for each permutation (the extended
Wolfsberg-Helmholz or EWH model). In the EWH model,
we use Clementi and Raimondi’s �a exponential parameters
(except that for Al, we average the s- and p-exponential
parameters in the spσ case in order to use the simpler
expression for the overlap in eq 17, Vide supra). In the
optimized Wolfsberg-Helmholz or OWH model, the four
Slater exponential parameters and four separate Kliljm param-
eters are optimized.39

In order to calculate the charge balance energy, one must
first calculate the partial atomic charges for each CSF. These
are determined using a Mulliken-Coulson population
analysis,80–82 which, using eq 11, yields

qA
(j) ) ZA

/ -∑
a∈ A

Paa
(j) (18)

where ZA
/ is the shielded nuclear charge of atom A (i.e., the

number of valence electrons in the neutral atom, which is
three for aluminum). The notation “a ∈ A” means that the
sum in eq 18 is over all orbitals a on center A.

The charge balance energy is written as the sum of on-
site and intersite interactions:

ECB
(j) )∑

A
∑
BgA

γ(RAB) qA
(j)qB

(j) (19)

where γ(RAB) is a Coulomb integral (Vide infra) and RAA ≡
0. The diagonal terms in eq 19 are called on-site interactions.
These interactions are the key element in Hubbard12,16–18

and DFT+U83,84 theories. The present theory also includes
the intersite interactions. If the latter are neglected, the
method is called TB+U, while the full theory is termed
TBCI.

A key difference from SCC-DFTB14,15 is that the elec-
trostatic terms are added to the energy of each configuration
after determining the orbitals, rather than iteratively while
determining the orbitals. Their effects are included by the
charge balance term of eq 19 and the configuration interaction
approximation of eq 5. Thus, TBCI is a noniteratiVe method.
The slowest step in either SCC-DFTB or TBCI is the
diagonalization of the one-electron Hamiltonian matrix in
eq 10, which approximately scales as N3, where N is the
number of atoms in the system. Since SCC-DFTB repeats
this step in each iterative cycle, whereas TBCI only does
this step once, TBCI is significantly faster. Furthermore, the
absence of an iterative step makes the analytical gradients
particularly stable and precise. Finally, the neglect of the
overlap integrals is a further feature that makes TBCI faster.

The on-site interactions γ(RAA) could be approximated by
the Pariser formula:85

γ(RAA) ≡ γAA ) IPA -EAA (20)

where IPA and EAA are, respectively, the ionization potential
and electron affinity of atom A; alternatively, they can be
taken as empirical parameters. In the current implementation,
the second option was chosen. It is convenient to use atomic
units and write

γAA )
e2

RA
(21)

where e is the charge of an electron (unity in atomic units),
and RA is a parameter with units of length that will be called
the atomic Coulomb radius.

The intersite charge interaction terms can be approximated
in various ways. For example, one possible approximation
for the Coulomb integral is based on a dielectric screening
model86,87 yielding, in atomic units

γ(RAB)) e2[RARB exp( -RAB
2

dRARB
)+RAB

2 ]-1/2

(22)

where d is a parameter (originally 486). Note that for A ) B,
this reduces to eq 21. If d ) ∞ and the geometric mean RARB

is replaced by an arithmetic mean, this becomes the
Ohno-Klopman formula that is widely used in semiempirical
molecular orbital theory.88–90

Omitting the configuration interaction step, that is, using
the lowest Ej rather than using eq 5, corresponds to assuming
that the eigenvectors of the CI matrix are the configurations
Φj and that the ground-state wave function is the CSF with
the lowest energy. This procedure leads to a nondifferentiable
potential energy surface whenever the identity of the lowest-
energy CSF switches. The use of eq 5 eliminates this
problem.

The total number of configurations of the form of eq 2 is
factorially large and thus unmanageable. Therefore, we limit
the sums in eq 5 to a subset of configurations. In the present
work, we consider two options. In both cases, the reference
CSF is the “aufbau” state where all electrons are paired up
in the MOs with the lowest Eval

(j); systems with an odd number
of electrons will have one MO with a single electron. The
first set of excitations, whose use yields a method called
TBCI-S, involves all single excitations from the occupied
orbitals (ok

(i) ) 1 or 2) to the unoccupied or singly occupied
orbitals (ok

(j) ) 0 or 1). In the second option, denoted TBCI-
SPD, in addition to the single excitations, all paired double
(PD) excitations are also included, where a paired double
excitation is defined as an excitation of two paired electrons
(i.e., electrons in the same orbital) from one doubly occupied
orbital (ok

(i) ) 2) to the same unoccupied orbital (ok
(j) ) 0).

Finally, we consider E(0). The zero of energy is taken as
the energy of the system with infinitely separated neutral
atoms. Thus,

E(0) )-NEatom (23)

where N is the number of atoms and Eatom is the energy of
a neutral atom. This same zero of energy is used regardless
of the overall charge of the system.

The next issue is to approximate the CI coefficients in
eqs 1, 4, and 5. We do this by using the following
approximation:
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|Cj|
2 )

exp(-Ej

∆ )
∑
k

exp(-Ek

∆ )
(24)

where ∆ is a parameter called the resonance integral. (Note
that if one defines ∆ ) kBT, where kB is the Boltzmann
constant, then one would have the classic equation for a
Boltzmann distribution.) These same weights are used in eq
4 to determine the partial atomic charges and in eq 5 to
determine the overall energy. The role of ∆ is to determine
how much each CSF contributes to the total energy E. Those
CSFs where Ej - min(Ej) . ∆ will have practically zero
contributions, while those with Ej - min(Ej) , ∆ will have
nearly equal contributions. Thus, one would like to have ∆
on the same order as the spread of CSFs that one wants to
contribute to the energy.

For simplicity, in the present work, we approximate �ij in
eq 6 as a constant ∆, the same as the resonance integral in
eq 24. Whether one might obtain better results by ap-
proximating �ij in terms of the overlap of configurations i
and j is a subject for a future study. The roles of ∆ and �ij,
in their respective equations, are responsible (Vide infra) for
determining which CSFs contribute significantly. While the
approximation that �ij is constant and is equal to ∆ was
initially made to reduce the parameter space during the
parametrization, it also helps ensure size consistency.

Since both of the sums in eq 6 are over all excitations,
the number of which scales as N2, the computational effort
of this method (eqs 5 and 6) scales as N4. To reduce the
scaling of the problem, only those terms j are included for
which |Cj|2 g 10-8, as the rest contribute negligibly to the
overall energy and its derivatives. For small systems, most
or all of the excitations contribute; in this case, the
computational effort for the method does scale as N4, but
this is not a concern due to the small sizes of the systems.
This truncation, however, has a very dramatic effect on the
scaling and computational times for larger systems, as most
of the CSFs do not have a significant contribution to the
overall energy. For example, for TBCI-S on Al177, only 54
of the 117 838 CSFs (i.e., 0.05%) are considered. For TBCI-
SPD, only 81 of the 235 410 (i.e., 0.03%) CSFs pass the
cutoff criterion. In general, over 98% of the CSFs were found
to be neglected. One thus has a very small prefactor on the
N4 step, with the rest of the work in eq 6 scaling as N2, so
that the computational cost for many systems will be
dominated by the diagonalization of the tight-binding Hamil-
tonian matrix, an N3-scaling process.

It was noted above that in eq 15 UZ
l is taken as a parameter

rather than as the experimental VSIP. This is motivated by
considering the ionization potential of the Al atom, which
should be just the VSIP of the Al 3p orbital. In TBCI, there
is, however, the ECB term (Vide supra) that contains γAAqAqA.
Since qA ) 1 in the atomic cation and qA ) 0 in the neutral
atom, this has a positive contribution to the cation and zero
contribution to the neutral atom. In fact, one can show that
for the Al atom:

UAl
s )-IAl

s + 1
RAl

(25)

UAl
p )-IAl

p + 1
RAl

+ 2�ij (26)

Equations 25 and 26 are used to determined the UZ
l

parameters in this work.
The method as described so far is suitable for only

homonuclear systems, such as particles or clusters containing
only aluminum atoms. When the theory is extended to
heteronuclear systems, a number of entities become depend-
ent on the atomic numbers of the atoms. Some of the
variablessspecifically U, RA, and Eatomsdepend only on a
single atom’s atomic number and become UZA, RZA, and
Eatom(ZA), respectively, where ZA is the atomic number of
atom A. Others depend on two atomic numbers, which may
or may not be different, and become κZAZB, τZAZB, KZiliZjljm,
γZAZB(RAB), and dZAZB. Furthermore, the definition of the E(0)

(eq 23) becomes

E(0) )-∑
Z

NZ Eatom(Z) (27)

where NZ is the number of atoms of atomic number Z, and
Eatom(Z) is the energy of a single atom. We will, however,
continue in this article using the simpler notation that suffices
for a homonuclear system.

One of the motivations behind developing TBCI was the
problem, in TB, of improper charges when molecules
dissociate. The fragment charges are obtained as the sum of
the atomic charges of all of the atoms of a fragment. For
the TBCI wave function, the atomic charges are obtained
by combining eqs 4 and 18:

qA ) ZA
/ -∑

a∈ A
∑

j

|Cj|
2Paa

(j) (28)

where the weighting factors given by eq 24.

3. Analytical Gradients of TBCI

The derivative of the TBCI energy E (eq 5) with respect to
a nuclear Cartesian coordinate XC of atom C is

∂E
∂XC

)∑
j

(∂|Cj|
2

∂XC
Γj + |Cj|

2
∂Γj

∂XC
) (29)

From the equations for |Cj|2 (eq 24) and Γj (eq 6), one finds
that their derivatives are

∂|Cj|
2

∂XC
)

|Cj|
2

∆ (∑
k [exp(-Ek

∆ ) ∂Ek

∂XC
]

∑
k

exp(-Ek

∆ )
-

∂Ej

∂XC) (30)

∂Γj

∂XC
)

∂Ej

∂XC
+ 1

2∑i
( ∂Ei

∂XC
-

∂Ej

∂XC
)(1-

Ei -Ej

√(Ei -Ej)2 + 4�ij
2)
(31)

From eq 12 for the energy of each CSF, one obtains an
expression for ∂Ej/∂XC that has three terms; since E(0) is
independent of geometry, its gradients are zero. The gradients
of the core-core repulsion energy (eq 14) are

∂Vrep

∂XC
)-∑

A
∑
B>A

τVrep
AB

∂RAB

∂XC
(32)
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The gradients of the valence energy can be found using
the Hellmann-Feynman theorem.38 This theorem states that

∂

∂XC
〈Ψ|H|Ψ〉 ) 〈Ψ| ∂H

∂XC
|Ψ〉 (33)

with 〈Ψ|Ψ〉 ) 1.91,92 Therefore, if

ck
†Hck ) εk (34)

where ck is a column vector of the matrix with elements cak,
then

∂εk

∂XC
) ck

† ∂H
∂XC

ck (35)

The one-electron Hamiltonian gradient matrix can be found
by taking the derivatives of eqs 15-17, as in previous TB
work.93,94

Finally, consider the gradients of the charge balance term.
Applying the product rule to eq 19 yields

∂ECI
(j)

∂XC
)∑

A
∑
BgA

[∂γ(RAB)

∂XC
qA

(j)qB
(j) + γ(RAB)

∂qA
(j)

∂XC
qB

(j) +

γ(RAB) qA
(j)

∂qB
(j)

∂XC
] (36)

where the gradients of the Coulomb integrals γ(RAB) can be
found by taking the derivatives of eq 22:

∂γ(RAB)

∂XC
) e2RAB[RARB exp( -RAB

2

dRARB
)+RAB

2 ]-3/2

×

(exp( -RAB
2

dRARB
)

d
- 1)∂RAB

∂XC
(37)

Clearly, ∂γ(RAB)/∂XC is nonzero only if XC is a Cartesian
coordinate of either atom A or B. The CSF atomic charges
qA

(j) were found using a Mulliken-Coulson population
analysis80–82 (eq 18), and thus,

∂qA
(j)

∂XC
)-∑

a∈ A

∂qA
(j)

∂Paa
(j)

∂Paa
(j)

∂XC
(38)

In the Supporting Information to a paper by Giesen et al.,95

it is shown that

∂qA
(j)

∂Paa
(j)
)-∑

b∈ A

δab (39)

From eq 11,

∂Paa
(j)

∂XC
)∑

k

MO

2 · ok
(j)cak

∂cak

∂XC
(40)

The derivatives of the eigenvector matrix can be found using
a unitary transformation as shown by Dykstra and Jasien:96

cXC ) cUXC (41)

where cXC is the matrix of the derivatives of the cak

coefficients with respect to the nuclear coordinate XC, and
UXC is the unitary transformation. Dykstra and Jasien showed
that the off-diagonal elements of UXC are96

Uab
XC(εa - εb))Rab

XCεb -Gab
XC (42)

where

RXC ) c†SXCc (43)

GXC ) c†HXCc (44)

Since the overlap matrix is neglected in TBCI (i.e., Sab )
δab, Vide supra), RXC ) 0. The diagonal elements of UXC are
zero since96

Uaa
XC )-1

2
Raa

XC ) 0 (45)

4. The Aluminum Databases

Four databases were used in the parametrization and evalu-
ation of the TBCI models. Each database has three compo-
nents: an energy database, an IP database, and a cluster
dissociation database. The complete databases are provided
in the Supporting Information.

The largest databasesAl974sis the union of several
subsets. The first subset is called the Al808 database, and it
consists of the 808 aluminum clusters and their energies
given in a previously published database;45 the composition
of the 808 cluster database is given in Table 1. In addition,
there are 22 ionization potentials of small Al1-13 clusters and
of three larger clusters (Al19, Al43, and Al55). There are also
34 dissociations of clusters ranging from Al2 to Al16 and 15
additional dissociations involving larger clusters. The small
neutral and cationic clusters that form the Al82 database (Vide
infra) are also included. This database (Al974) is used in
the evaluation of the various theoretical methods.

The next databasesAl824sis a subset of the larger
database. It contains 686 of the 808 clusters, specifically Aln

Table 1. Number of Clusters (nk) of Each Size (Nk) in the Al808 Cluster Database

Nk nk Nk nk Nk nk Nk nk Nk nk

2 44 16 1 39 1 64 1 92 1
3 402 17 1 42 2 65 1 93 1
4 79 18 4 43 14 68 1 104 1
7 42 19 27 50 2 69 1 105 1
9 1 20 1 51 7 78 2 113 1
10 1 21 5 54 2 79 7 128 1
11 1 26 1 55 12 80 1 129 1
12 4 27 11 56 1 81 1 134 3
13 65 28 5 57 6 86 3 135 3
14 2 35 5 58 1 87 10 141 1
15 7 38 1 59 6 89 1 177 1

Tight-Binding Configuration Interaction J. Chem. Theory Comput., Vol. 4, No. 5, 2008 809



where n ) 2-13, 19, 35, 55, and 86. It also contains the
Al82 database (Vide infra). To this are added the 22 IPs and
34 dissociations involving small clusters only (Vide supra).
This database was used during the initial optimizations of
the TBCI and TB+U methods.

The Al711 database, a subset of Al824, contains only the
711 clusters Aln for which n ) 2-13 (including those of
appropriate size from the Al82 database). After significant
preliminary work, it was found that this database is sufficient
for optimizing the TBCI and TB+U methods (Vide infra).
This database does not include any IP or dissociation data.

Al82 is a database that was generated to fit the repulsive
interaction of eq 14, as it is more balanced than the larger
database for this purpose. For a number of reaction coordi-
nates (stretch of Al2, linear and perpendicular approach of
Al to Al2, symmetric stretch of D3h Al3, parallel and
perpendicular approach of two Al2 units, stretch of Ih Al13,
and an approach of two Al9 units derived from a face-
centered-cubic Al13 unit), five points (see Figure 1) were
determined for both the neutral and cationic systems. First
the minimum (re) of the potential energy surface was
determined, along with the corresponding equilibrium dis-
sociation energy (De). Then, using V(re - 0.3 Å) and V(r )
∞), a Morse curve97 was fit and the points rDe(V ) +De), r0

(V ) 0), and r1 and r2 (V ) -De/2) were determined. The
energies of all five points were determined at the PBEh/6-
311+G(3d2f) or PBEh/MEC level of theory as appropriate
(Vide supra). For the smaller clusters (ne 13), this procedure
was repeated for both the neutral and cationic systems; for
the larger clusters, this procedure was done once for the
neutral species, and the cationic species employ the same
geometries as in the neutral case. Two extra points were
added when, in two cases, the energy of the points rDe were
too far from the predicted Morse curve.

The cluster energies and IPs were calculated at the
PBEh/6-311+G(3d2f)98–100 level of theory for clusters up

to Al13 in size and at the PBEh/MEC level for larger clusters.
The PBEh101 hybrid exchange-correlation functional (Adamo
and Barone’s hybrid version101 of the Perdew-Burke-
Ernzerhof functional,102,103 also called PBE0 or PBE1PBE)
was chosen on the basis of comparisons41 to accurate
MCG3/3104,105 energies for small clusters. The MEC basis
set-relativistic effective core potential was designed to yield
accurate energies for large aluminum clusters.43

The accuracy of the PBEh IP predictions was checked by
comparing the IPs obtained for small clusters to IPs
calculated using the coupled cluster ab initio method with
all single and double substitutions106 with a quasiperturbative
estimate of the effect of the connected triple substitu-
tions107sCCSD(T)sextrapolated to the complete-basis-set
limit with the sequence of aug-cc-pV(n+d)Z basis sets.
Dunning’s aug-cc-pV(n+d)Z basis sets (n ) D, T, Q)108

were used as recommended by Martin et al. for the elements
Al-Ar.109,110 In particular, the Hartree-Fock (HF) energy,
the CCSD correlation energy, and the connected triple
excitationss(T)scontributions were extrapolated using the
Weizmann-1 extrapolation scheme recently proposed by
Martin and Parthiban:111,112

E∞ )En +
En -En-1

(n⁄n-1)
� - 1

(46)

where the HF energy and CCSD contributions are determined
with the two larger basis sets (i.e., n ) 4) with � values of
5 and 3.22, respectively, while the (T) contribution is
extrapolated with the two smaller basis sets (i.e., n ) 3) and
with � ) 3. The comparison presented in Table 2 between
the PBEh/6-311+G(3d2f) and extrapolated CCSD(T) IPs
shows that the former are sufficiently accurate. The geom-
etries of these specific Al clusters are given in the Supporting
Information.

5. The Fitting Procedure

The error function for a given model and database has a
number of components and is similar to that used in previous
work.39,41–43,45 The mean unsigned error per atom in the
energies of a set of nk aluminum clusters of size Nk is

εNk
) 1

2Nk( ∑
i)1

nk

wi∆Ei
k

∑
i)1

nk

wi

+
∑
i)1

nk-1

∑
j)i+1

nk

wiwj∆∆Eij
k

∑
i)1

nk-1

∑
j)i+1

nk

wiwj
) (47)

where wi is the weight of cluster i (Vide infra) and

∆Ei
k ) |Ei

k,PBEh -Ei
k,TBCI| (48)

∆∆Eij
k ) |∆Ei

k -∆Ej
k| (49)

and Ei
k,PBEh and Ei

k,TBCI are the PBEh and TBCI energies,
respectively, of cluster i of size Nk. The second term in eq
47 was found in previous work39,41,42,45 to be important in
order to obtain a better fit with respect to the relative energies
within a set of clusters of the same size. The total mean
unsigned error in the energies is

εEN )
1

NNk

∑
k)1

NNk

NkεNk
(50)

Figure 1. Diagram of a Morse curve showing re, rDe, r0, r1,
and r2.
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where NNk is the number of different cluster sizes. At certain
times during the parametrization (Vide infra), the contribution
of εNk)2 to εEN was increased by a factor of 5; when this is
done, εNk)2 is multiplied by 5, but NNk and nk were not
changed.

The databases contain structures that are high in energy
due to small interatomic distances. To prevent these struc-
tures from dominating the fit, weights (wi) are included in
eq 47. A scheme previously used45 in the parametrization
of analytical potential energy functions for aluminum was
chosen. This scheme is defined as follows. If Ri is the
smallest interatomic distance in a given system, then wi is
defined as

wi ) { 1 RigRnc

V2(Rnc)

V2(Ri)
Ri < Rnc

(51)

where Rnc is the nonclose radius, the cutoff for the
definition of “too close,” and V2(R) is the energy of the
aluminum dimer at separation R. Rather than calculate,
using DFT, the diatomic energy for every Ri, all of the
available Al2 DFT data, with R e 3.0 Å, were fit to a
polynomial. The obtained polynomial, with a fitness of
R2 ) 0.998, is

V2(Ri))-15.66Ri
3 + 114.0Ri

2 - 275.4Ri + 219.2

(52)

where the units of V2 and Ri are electronvolts and Ångstroms,
respectively. Rnc is chosen such that V2(Rnc) )-V2(re), which
results in Rnc ) 1.798 Å.

The MUE for the IPs is

εIP )
1
2( 1

nIP
∑
i)1

nIP

∆IPi +
2

nIP(nIP - 1) ∑
i)1

nIP-1

∑
j)i+1

nIP

∆∆IPij)
(53)

where nIP is the number of clusters in the IP database
and

∆IPi ) |IPi
PBEh - IPi

TBCI| (54)

∆∆IPij ) |∆IPi -∆IPj| (55)

The MUE of the fragment charges upon dissociation, εdis,
is:

εdis )
Ω hartree

unit charge
ndis

∑
i)1

ndis

|qi| (56)

where ndis is the number of dissociating clusters in the
database, qi is the charge on each fragment of dissociated
cluster i as determined by TBCI, and Ω is a constant taken
as 0.1 on the basis of initial estimates of the relative
magnitudes of εEN, εIP, and εdis. The errors in the dissociation
charges are |qi| since experimentally only neutral fragments
are observed. The total error function ε is defined as

ε)
NNk

εEN + εIP + εdis

NNk
+ 1+Ω

(57)

The error function in eq 47 is in units of electronvolts per
atom, while all other error functions are in units of
electronvolts.

In order to fit the parameters in the TBCI models, a
microgenetic algorithm113 was used, specifically version 1.7a
of Carroll’s FORTRAN code.114 locally modified with our
own fitness function and designed to run in parallel using
the message-passing interface (MPI).115,116 Because genetic
algorithms, by definition, maximize a given function, the
fitness function, f, used was minus the total error function ε.

There are different components to the TBCI model. Rather
than optimize all of the parameters at once, it was decided
to optimize the model in stages. Thus, for a given component
being optimized, initial values for the other parameters are
chosen on the basis of reasonable valuesseither from
physically reasonable values or from a previous optimizations
that were kept fixed during the optimization. The parameters
in Vrep (i.e., κ and τ) were the first to be optimized. During
the initial stages, values for the remaining parameters were
chosen as follows:

• In Eval, the Wolfsberg-Helmholz parameters were taken
from a previously published TB model,46 specifically the
third entry in Table S1 of this reference, which corresponds
to a TB-WH model, where all of the Wolfsberg-Helmholz
constants (Kliljm, eq 16) are given by a single K0. The Slater-

Table 2. Comparison of the PBEh/6-311+G(3d2f) and Extrapolated CCSD(T) Ionization Potentials (eV)

extrap. CCSD(T)a PBEh ∆IPi
b %∆c

Al2 (RAl-Al ) 1.9 Å) 7.701 7.761 0.060 0.8
Al2 (RAl-Al ) 2.528202 Å) 6.570 6.600 0.030 0.5
Al2 (RAl-Al ) 2.7 Å) 6.362 6.352 -0.010 -0.2
Al3 C∞v (RAl-Al ) 2.863, 1.699 Å) 6.068 6.053 -0.014 -0.2
Al3 D3h (RAl-Al ) 2.59 Å) 6.514 6.545 0.031 0.5
Al3 D3h (RAl-Al ) 2.5066 Å) 6.454 6.533 0.080 1.2
Al4 (edge-on approach of Al (RAl-Al ) 2.629 Å) to Al3 D3h RAl-Al )

2.5066 Å)
6.450 6.410 -0.040 -0.6

Al4 (vertex approach of Al (RAl-Al ) 1.800 Å) to Al3 D3h RAl-Al )
2.863 Å)

6.465 6.376 -0.089 -1.5

Al4 (top-on approach of Al (RAl-Al ) 3.08 Å) to a slightly distorted
Al3 D3h RAl-Al ) 2.5 Å)

6.038 6.098 0.060 1.0

Al4 (rhomboid (D2d) RAl-Al ) 2.551 Å) 6.690 6.560 -0.110 -1.6
Al5 (C2v planar) 6.616 6.576 -0.040 -0.6
MUEd 0.0513

a Extrapolated CCSD(T); see text. b Difference in IPs; see eq 54. c Percent difference in IP. d Mean unsigned error in eV.
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type orbital exponents (�a) were taken from the Hartree-Fock
calculations by Clementi and Raimondi.78 Thus, K0 )
0.409 61, �s ) 2.5935 Å-1, and �p ) 2.5610 Å-1.

• The diagonal Hamiltonian elements Ua (eq 15) were
determined using eqs 25 and 26, where RAl was determined
as below, and the VSIPs were taken from experiments and
are IAl

s ) 10.620 eV and IAl
p ) 5.986 eV;117,118 thus, UAl

s )
6.811 eV and UAl

p ) 1.977 eV.
• For γAB (eq 22), the three parameters were chosen on

the basis of physical intuition; for simplicity, d ) 1.0. Since
RAl is the distance where the repulsion switches from an r-1

to an e-r behavior, and since this occurs as the two electron
clouds start to overlap, RAl was chosen as twice the van der
Waals radius for Al, which has been experimentally deter-
mined to be 1.89 Å.119

• The parameter ∆ controls how many CSFs contribute
significantly to the configuration interaction wave function.
It was chosen to be approximately 2 orders of magnitude
smaller than the ionization potential of the aluminum atom;
in particular, ∆ ) 0.10 eV.

• The zero of energy, E(0), was determined from a
calculation on the aluminum atom with the given set of
parameters.

With the above parameters frozen, the two parameters in
Vrep were optimized. For this optimization, the Al82 database
was used and the quantity that was minimized was εEN (eq
50). Once these parameters were optimized, they were frozen
and K0 was then optimized. This was done using Al824 and
fitting to ε (eq 57) rather than εEN. This cycle of optimizations
was repeated. Finally, all three parameters in each model
were allowed to vary. From these values, models were
optimized with different values of ∆.

While the TBCI models based on TB-WHsespecially
TBCI-SPDsshowed reasonable results, notably in the frag-
mentation charges, they are not sufficiently reliable. There-
fore, the next level of TB approximationsEWHswas used
for the TBCI and TB+U models. In this model, four different
Kliljm (eq 16) values are used. Because preliminary evaluations
showed that the previous models were most deficient in the
performance for small clusters, initially the TBCI models
were optimized against εEN for the Al711 database. Finally,
for both TBCI and TB+U, each with several fixed values
of ∆, we simultaneously optimized six parameters (four
Wolfsberg-Helmholz and two repulsion parameters) against
ε for our Al824 database.

It was noted during the evaluation of the obtained models
that, while the overall performance was satisfactory, the
models predicted Al2 to be too strongly bound by over half

an electronvolt. By increasing the relative weight of ε2 in
εEN (see eq 50) 5-fold, models were obtained that showed
improved performance for Al2 without significantly com-
promising the fits to the rest of the data.

6. Computational Methods and Software

The CCSD(T) calculations were performed using the MOL-
PRO 2006.2 ab initio program package.120 All DFT calcula-
tions were carried out using Gaussian 03,121 except for the
IP calculations for the clusters larger than Al55, which were
calculated using NWChem, version 4.5.122 The TBCI
calculations were done using an in-house code. The com-
parisons to the previously published NP-A and NP-B
potentials45 were done using published routines.123 The
comparisons to the TB and MBTB models39,44 were done
using the TB 2.0 code.124

The newly developed TBCI and TB+U models are
implemented in TBPAC 2007,125 which is available from
the authors at http://comp.chem.umn.edu/tbpac/.

7. Results and Discussion

Three different TBCI models were examined: TBCI-S,
TBCI-SPD, and TB+U; for TB+U, we used only single
excitations. On the basis of extensive tests, we found that ∆
) 0.05 eV led to better results than ∆ ) 0.10 eV and
dramatically better results than ∆ ) 0.20 eV; therefore, we
chose ∆ ) 0.05 eV for the final optimizations. We also set
�ij ) ∆. For all parameter sets in the present article, we also
constrained d ) 1 without optimization. All other parameters
were optimized or frozen as discussed above. The final
parameters are in Table 3.

In addition to comparisons between the TBCI models, the
TBCI results are compared in Table 4 to three other kinds
of results, with the comparison in all three cases based on
comparing the errors measured against the PBEh Al974
database. The first and second kinds of methods to which
we compare are the set of results obtained using TB.
Previously, six different TB models were parametrizedsthree
based on the Wolfsberg-Helmholz model in eqs 15 and 16
(TB-WH, TB-EWH, and TB-OWH) and three that contain
many-body terms (MBTB, specifically TB-S, TB-CN, and
TB-BA that include, respectively, screening, coordination
number and bond angle many-body effects). Five param-
etrizations of the WH model were used, one from the original
TB paper (herein denoted as TB-WH(SSST))39 and four
(denoted TB-WH(JSTi), i ) 1-4) that are the first four
entries in Table S-1 of ref 46. The deficiencies of these TB

Table 3. Final Parameters of the TBCI and TB+U Models

model model

parameter (units) S SPD TB+U parameter (units) S SPD TB+U

Kssσ (unitless) 0.033858 0.052569 0.045132 κ (eV) 796.05 573.02 564.15
Kspσ (unitless) 0.019876 0.37467 0.54078 τ (Å-1) 2.8216 2.6602 2.5734
Kppσ (unitless) 1.6238 1.8041 1.4896 R (Å) 3.7804 3.7804 3.7804
Kppπ (unitless) 1.9347 1.2179 1.5931 d (unitless) 1.0 1.0 1.0
�ssσ (Å-1) 2.5935 2.5935 2.5935 ∆ (eV) 0.05 0.05 0.05
�spσ (Å-1) 2.5772 2.5772 2.5772 E(0) (eV) -15.851 -15.951 -15.851
�ppσ (Å-1) 2.5610 2.5610 2.5610 Us (eV) 6.8110 6.8110 6.8110
�ppπ (Å-1) 2.5610 2.5610 2.5610 Up (eV) 1.9770 1.7770 2.0770
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methods, as well as the anticipated difficulty of extending
them to heteronuclear systems, were the impetus behind this
work; for a full description of these methods, see refs 39
and 46. The third kind of method to which we compare is
the analytic PEFs, in particular NP-A and NP-B, which we
previously developed.45 These PEFs were found to accurately
estimate the energy of aluminum clusters; since they do not
contain any information on electrons or charges, they are
incapable of predicting IPs or charges. NP-A is the more
accurate of the two PEFs, and it includes many-body terms,
while NP-B is an order of magnitude less computationally
expensive but nearly as accurate.

Table 4 presents a comparison of the new and previous
methods. This evaluation is over Al974. Also given in this
table is an evaluation over Al974 with Al82 excluded. This
was done because NP-A and NP-B cannot handle charged
systems.

7.1. Preliminary Observations. Before discussing the
final versions of the three new methods, we first mention
some observations made during the parametrization.

First, we note that requiring all four Wolfsberg-Helmholz
Kliljm constants to be the same (i.e., using the WH approxima-
tion, Vide supra) leads to significantly larger (about a factor
of 2 to 3) values of εEN, the average error in the energies of
the clusters and nanoparticles. The optimized value of a
single K is typically in the range of 0.55-0.8, but Table 3
shows that the final optimized values range from 0.03 to 1.93.
In light of this wide range of optimized values, it is not
surprising that a single compromise value is much worse.
Removing the restriction that all four Kliljm’s be equal (i.e.,
moving to the EWH approximation, Vide supra) also lowered
εIP by about a factor of 2.

Table 4. Mean Errorsa

model εEN (0) ε (0) εEN εIP εdis ε max(q)b

TBCI-S 1.01 65.52 1.08 704.8 1.07 65.59 (6(×5)
TBCI-SPD 0.94 54.40 1.01 571.1 0.89 54.48 (5(×7)
TB+Uc 0.99 86.71 1.12 1287.2 1.29 86.83 (6(×6)
TB-WH(SSST) 2.33 93.00 2.44 570.3 1.66 93.11 (6
TB-WH(JST1) 2.11 102.53 2.23 582.3 1.86d 102.65 (7(×4)d

TB-WH(JST2) 2.00 93.19 2.12 598.6 1.66d 93.30 (7(×2)d

TB-WH(JST3) 1.93 90.39 2.05 591.3 1.61d 90.50 (7d

TB-WH(JST4) 1.15 150.34 1.30 450.3 2.91 150.49 (10
TB-EWH 1.05 110.95 1.15 529.9 2.07 111.05 (8
TB-OWH 0.71 380.59 0.80 514.8 7.64 380.69 (36
MBTB-S 1.74 114.24 1.87 482.3 2.14 114.37 (9(×2)
MBTB-CN 2.01 357.36 2.09 403.8 7.18 357.45 (34
MBTB-BA 1.57 249.32 1.68 488.9 4.93 249.44 (18
NP-Ae 0.71
NP-Be 0.80

a εEN, εIP, and ε are in units of meV. εdis is in units of charge. The first two columns with (0) exclude the data in Al82. b Maximum
fragment charge of the clusters in the dissociation part of Al974. The number in parentheses denotes the number of instances of this
maximum charge. c TB+U is with single excitations only. d All clusters for the methods in this row (in the case of TB-WH(JST3)-all but one)
have at least (1 charge. e Energies of neutral clusters only; see text.

Figure 2. Plot of the Al2 stretch potential energy surface for
various theoretical methods.

Figure 3. Plot of the perpendicular Al2 + Al (C2v, r(Al2) )
2.863 Å) potential energy surface for various theoretical
methods.
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Another observation is that optimizing against only εEN

for Aln with n ) 2-13 (i.e., Al711) is capable of yielding
average errors (ε) for Al974 that are quite close (∼5-20%
larger) to those obtained by optimizing over the larger Al824
database. This is an indication of the robustness of the
methods, and thus the final optimizations were over this
smaller subset.

It was also noted that, while the methods performed very
well for the energies of Al clusters and nanoparticles, one
glaring exception was Al2. The initial parametrizations
predicted Al2 to be too strongly bound by more than 0.5
eV. A 5-fold increase of the relative weight of the Al2 data

in the evaluation of εEN (eq 50) provided TBCI and TB+U
models that gave better predictions of the Al2 potential energy
surface with minimal (insignificant) deterioration of the
remaining data predictions. A 10-fold increase provided
excellent prediction of the Al2 curve but resulted in poor
potential energy curves for the other small clusters. There-
fore, the final optimizations were against εEN for Al2-13 with
a 5-fold increase in the weights for Al2.

If we consider the TBCI-SPD calculations on all of the
clusters in the energy and dissociation subsets of Al974, we
find that the reference CSF (i.e, the aufbau CSF) is the
dominant CSF in the CI expansion in only 57% of the cases.

7.2. Comparison of the Methods. Figures 2-7 depict
potential energy profiles for various one-dimensional cuts
through the potential energy surfaces of Al2 to Al7. These
figures compare the results to PBEh, TB-EWH, MBTB-S,
and NP-A. On the basis of these figures and Table 4, we
can draw some conclusions.

First of all, we see that TBCI with the SPD configurational
selection scheme is slightly better than the S scheme, on
average, with the final ε decreasing by 17%. Both TBCI
models yield similar errors in the cluster and nanoparticle
energies (i.e., εEN), but TBCI-SPD is better in predicting IPs

Figure 4. Plot of the linear Al + Al2 (C∞v, r(Al2) ) 2.863 Å)
potential energy surface for various theoretical methods.

Figure 5. Plot of the on-top approach of Al to Al3 (D3h,
r(Al-Al) ) 2.863 Å) potential energy surface for various
theoretical methods.

Figure 6. (A) Plot of the potential energy surface for the
transition between tetrahedral (Td) and rhomboid (D2h) Al4 for
different theoretical methods. (B) Images of the clusters in
the transition between tetrahedral and rhomboidal Al4.
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(i.e., εIP) and fragment charges (i.e., εdis). TB+U, which is
slightly faster than the TBCI models, performs equally well
on predicting cluster and nanoparticle energies but is much
worse in predicting fragmentation charges and is woeful in
predicting IPs. In contrast to the traditional Hubbard model,12

the TB+U method does not give the correct dissociation limit
because the Hubbard (+U) correction is not introduced self-
consistently in the present formalism.

In general, compared to the previously published TB and
MBTB models,39 the new methods are superior in predicting
cluster and nanoparticle energies; the sole exception is the
TB-OWH model. While TBCI-SPD and, to a lesser extent,
TBCI-S are capable of predicting IPs with similar accuracy
to that of the TB and MBTB methods, the new methods are
superior when considering fragmentation charges. The TBCI
and TB+U methods predict many of the cases to be neutral,
while some of the TB methods are incapable of predicting
any neutral fragments. In fact, TB-OWH predicts 15 of the
dissociations to have fragment charges of (10 or more (12
with (20 or more).

It would be challenging to explain how TBCI is capable
of eliminating such large charges. These charges are intrinsic
artifacts of the methods, and not of our implementation, and
affect also the older work of Slater and Koster,1 Wolfsberg
and Helmholz,70 and Hoffmann.2,72–75 In the TB models,
the large charges result from the density of states in the
valence energy region being more localized on one dissocia-
tion fragment. This would result in more electron density,
and hence negative charge, being localized on this fragment,
which in turn results in a positive charge localized on the
other fragment. The excitations in TBCI could alleviate this
charge imbalance by transferring electrons from one cluster
to the other. However, only single and pair double excitations
are considered, and thus, a maximum of two units of charge
could be transferred. Nonetheless, much larger charges are

being alleviated in the TBCI models. The most likely
explanation is that the charge balance term prevents the
Wolfsberg-Helmholz (Kliljm) and repulsion (κ and τ) param-
eters from entering regions of parameter space, during their
optimizations, that would result in large charge imbalances.
Even more remarkable is the observation that reasonable
fragmentation charges are obtained despite the fact that they
were not included in the optimization of the TBCI models.
In fact, when the TBCI models are evaluated against Al974
using the TB-OWH Kliljm, �liljm, and repulsion parameters,
similarly large fragment charges are obtained as with TB-
OWH. Thus, the charge balance term is clearly responsible
for dampening, during the parametrization, any large charges
that may occur. Note that, in this test of TB-OWH with CB
terms, instead of eq 14, the following model for the repulsion
was used here as in TB-OWH:

Vrep ) κ∑
A

∑
B>A

exp(-τ RAB)

RAB
u

(58)

where u is a constant.39

8. Summary

In summary, a new TB method has been proposed and
developed. This model, called TBCI, improves on TB by
applying a configuration-interaction-like procedure based on
the TB orbitals. In such a manner, partial charges are
incorporated into the calculation in a noniterative manner.
This new TBCI model was optimized for aluminum nano-
clusters and found to give exceptional performance with a
low average error. The method is also applicable to other
kinds of systems.
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Abstract: Many biologically interesting phenomena occur on a time scale that is too long to be
studied by atomistic simulations. These phenomena include the dynamics of large proteins and
self-assembly of biological materials. Coarse-grained (CG) molecular modeling allows computer
simulations to be run on length and time scales that are 2–3 orders of magnitude larger compared
to atomistic simulations, providing a bridge between the atomistic and the mesoscopic scale.
We developed a new CG model for proteins as an extension of the MARTINI force field. Here,
we validate the model for its use in peptide-bilayer systems. In order to validate the model, we
calculated the potential of mean force for each amino acid as a function of its distance from the
center of a dioleoylphosphatidylcholine (DOPC) lipid bilayer. We then compared amino acid
association constants, the partitioning of a series of model pentapeptides, the partitioning and
orientation of WALP23 in DOPC lipid bilayers and a series of KALP peptides in dimyristoylphos-
phatidylcholine and dipalmitoylphosphatidylcholine (DPPC) bilayers. A comparison with results
obtained from atomistic models shows good agreement in all of the tests performed. We also
performed a systematic investigation of the partitioning of five series of polyalanine-leucine
peptides (with different lengths and compositions) in DPPC bilayers. As expected, the fraction
of peptides partitioned at the interface increased with decreasing peptide length and decreasing
leucine content, demonstrating that the CG model is capable of discriminating partitioning
behavior arising from subtle differences in the amino acid composition. Finally, we simulated
the concentration-dependent formation of transmembrane pores by magainin, an antimicrobial
peptide. In line with atomistic simulation studies, disordered toroidal pores are formed. In
conclusion, the model is computationally efficient and effectively reproduces peptide-lipid
interactions and the partitioning of amino acids and peptides in lipid bilayers.

1. Introduction
Molecular simulations are a useful tool in the interpretation
of experimental data, and they provide structural and dynamic

details that cannot be easily probed experimentally. Despite
the progress in computer hardware and simulation algorithms,
atomistic simulations are still limited to systems containing
tens or hundreds of thousands of atoms and a submicrosecond
time scale. Cellular processes, however, cover time scales
of nanoseconds to seconds and involve hundreds of different
molecules interacting on a multitude of length scales. Many
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biologically interesting phenomena, including vesicle fusion,
formation of higher-order protein complexes, protein folding,
and signal transduction, are beyond the capabilities of
atomistic simulations.1 In order to simulate these motions,
simplification of the model is required. The use of coarse-
grained (CG) models represents an attractive alternative to
atomistic models, allowing for simulations to be run on larger
systems and longer time scales and still providing some
realistic structural details.

A large diversity of coarse-graining approaches for bio-
molecular systems is available. They range from qualitative,
solvent-free models to models including chemical specificity.
With reference to proteins, numerous coarse-grained descrip-
tions have been developed for studying protein-folding
thermodynamics and kinetics and protein structure prediction.
These approaches include both structure-based, knowledge-
based, and physics-based models. The type of approach and
the level of sophistication of the different models vary greatly
depending on the scope of the model and the properties
investigated. Among structure-based models, simple Go
models2 proved useful in the characterization of the kinetics
and cooperativity effects in protein folding. Miyazawa and
Jernigan developed a knowledge-based statistical potential
to predict the structure of proteins in solution.3 This statistical
potential was derived by estimating effective inter-residue
contact energies from the numbers of residue–residue
contacts observed in crystal structures of globular proteins.
Das et al. recently developed a sophisticated knowledge-
based potential incorporating sequence details and energetic
frustration for a more realistic study of folding pathways.4

Elastic network models5,6 have been used in conjunction with
normal-mode analysis to predict large-scale motions in
proteins. They rely on the knowledge of the protein structure
and on the assumption that motions relevant for biological
functions depend on low-frequency collective fluctuations.
Simple, exact physics-based models for proteins were
pioneered by Chan and Dill.7,8 Their lattice model was used
to show that the basic features determining a protein’s fold
lie mainly in the topological arrangement of hydrophobic
and polar residues. The use of physics-based coarse-grained
models for protein structure prediction was pioneered by
Warshel and Levitt9 and later developed by many others.
Among them, Scheraga and co-workers have developed a
united-residue force field parametrized against restricted free-
energy functions from all-atom simulations of polypeptide
chains, without any information from structural databases.10

Very different approaches have been used to study problems
in which the protein structure does not need to be predicted
and the details of it are not crucial. Coarse-grained models
have been developed recently in the group of McCammon
to study large-scale protein motions in HIV-1 protease.11

Schulten and co-workers developed a mesoscopic protein
model aimed at simulating large-scale motions of macro-
molecular assemblies. In this case, the protein is simply
considered as an elastic object with a well-defined three-
dimensional shape, and changes in the detailed protein
structure are not accounted for.12 A number of mesoscopic
models have been developed in order to study the effect of
membrane proteins on the properties of biological mem-

branes, reviewed in refs13–16. These models generally
disregarded the details of the protein structure and internal
dynamics but proved useful in understanding protein–lipid
interactions and lipid-mediated protein–protein interactions,
progressing beyond the original lattice models. Both Ven-
turoli et al. and Smeijers et al. developed a coarse-grained
model that enabled the investigation of the effects of a
mismatch in the hydrophobic thickness of proteins and the
lipid bilayer (the so-called hydrophobic mismatch) and, in
particular, the lipid-induced protein tilt and protein-induced
membrane deformations.17,18 Multiscale approaches that
couple the atomistic and coarse-grained levels of description
have also been applied recently to study peptide-membrane
interactions19 and proteins.20,21 When all of the different
coarse-grained approaches are considered, the level of re-
solution and the degree of flexibility of the proteins vary
from several particles per amino acid to one particle per
protein, depending on the size of the object and motions that
need to be described.

Marrink and co-workers recently developed a coarse-
grained force field for simulation of lipids and surfactants,22,23

coined the MARTINI force field. The force field has been
shown to reproduce semiquantitatively fundamental structural
and thermodynamic properties of lipid bilayers.22,24–26 The
model was developed in close connection with atomistic
models, but with a very different philosophy compared to
iterative Boltzmann inversion,27 inverted Monte-Carlo
schemes,28–30 or force matching31 approaches. Instead of
focusing on an accurate reproduction of structural details of
a particular state for a specific system, the model aimed for
a broader range of applications without the need to repa-
rameterize the model each time. This was achieved by
extensive calibration of the chemical building blocks of the
coarse-grained force field against thermodynamic data, in
particular, oil/water partitioning coefficients.22,23 This is
similar in spirit to the recent development of the GROMOS
force field.32

Here, we present an extension of the MARTINI force
field,23 to model proteins. The overall aim of our coarse-
graining approach is to provide a simple model that is
computationally fast and easy to use, yet flexible enough to
be applicable to a large range of biomolecular systems. In
the MARTINI model, several atoms are grouped together
in a “virtual” bead that interacts through an effective
potential. The reduction of the number of degrees of freedom
and the use of shorter-range potential functions makes the
model computationally very efficient, allowing for a reduc-
tion of the simulation time by 2∼3 orders of magnitude
compared to the most common atomistic models. The present
model for proteins was developed using the same philosophy
as for the lipids, using the partitioning free energy of amino
acid side chains between water and oil phases to select
the appropriate nonbonded interaction parameters. Processes
such as protein folding, peptide membrane binding, and
protein–protein recognition depend critically on the degree
to which the constituents partition between polar and
nonpolar environments. The choice of particle types and the
nonbonded interaction matrix is left unaltered, making the
protein force field fully compatible with the lipid force field.
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The choice of the bonded parameters was based on the
distribution of bond lengths, angles, and dihedrals calculated
from the Protein Data Bank (PDB). Similar models have been
developed recently by other groups as well. Starting from
Marrink’s original model for lipids,22 the groups of Schulten
and Sansom built a model for proteins and studied lipoprotein
particles33 and membrane proteins.34,35 The major differences
with the approach presented in this paper is that (i) we base
our CG protein model on the new MARTINI CG force field,
which has many more particle types and allows for discrimi-
nation between all amino acids, and (ii) we base the particle
assignment on a systematic investigation of thermodynamic
properties of each amino acid. Using a preliminary version
of the current model, Periole et al.36 recently managed to
study the oligomerization of rhodopsins, a transmembrane
protein belonging to the class of G-protein coupled receptors.
It was found that the presence of hydrophobic mismatch
favors rhodopsin aggregation, in quantitative agreement with
results from FRET experiments that were performed in
conjunction to the simulations. The simulations furthermore
revealed that protein–protein interactions inside a membrane
bilayer show a site preference related to localized mismatch,
pointing to the importance of modeling proteins as chemi-
cally detailed objects rather than as simplified rods. Yefimov
et al.37 succeeded in simulating the spontaneous tension-
driven gating of a membrane-embedded mechanosensitive
protein channel, also using a prerelease of the MARTINI
protein force field. This simulation comprises one of the first
examples of a membrane protein in action, resolved at near-
atomic detail. In another recent application,38 the gating
motions of membrane-embedded potassium channels were
studied. It was found that channel gating is coupled to subtle
displacements of the voltage sensor domain. A preliminary
version of the current force field has also been applied to
study the conformation of apoA-1 in model spheroidal high-
density lipoprotein particles.39 Extensive comparison of the
CG system to all-atom simulations revealed a close cor-
respondence, both in structure and in dynamics.

The present work is organized as follows. First, we
describe the force field parametrization procedure, for both
bonded and nonbonded interactions. Then, we present results
for a range of test cases of the model, focusing on simulations
of peptide-membrane systems. In particular, we show that
(i) the potential of mean force for single amino acid side
chains across a lipid membrane is very similar with the CG
model compared to results obtained with all-atom models,
(ii) the correct partitioning and orientation of a large variety
of small peptides at the water-bilayer interface is repro-
duced, and (iii) antimicrobial peptides (AMPs) form trans-
membrane pores that look similar to what has been shown
with all-atom simulations.

2. The Model

2.1. Basic Parametrization. The basic parameters for the
CG peptide model are the same as those published previously
for the CG lipid model.22,23 The peptide force field described
here is fully compatible with the latest lipid force field,
coined the MARTINI force field. The version described in

the current paper is denoted v2.1. In this section, we provide
a brief overview of the basic parametrization. More details
about the CG model can be found in the original papers.22,23

The Mapping. The MARTINI model23 is based on a four-
to-one mapping; that is, on average, four heavy atoms are
represented by a single interaction center, with an exception
for ringlike molecules. To map the geometric specificity of
small ringlike fragments or molecules (e.g., benzene, cho-
lesterol, and several of the amino acids), the general four-
to-one mapping rule is insufficient. Ringlike molecules are
therefore mapped with higher resolution (up to two-to-one).
The model considers four main types of interaction sites:
polar (P), nonpolar (N), apolar (C), and charged (Q). Within
a main type, subtypes are distinguished either by a letter
denoting the hydrogen-bonding capabilities (d ) donor, a
) acceptor, da ) both, 0 ) none) or by a number indicating
the degree of polarity (from 1 ) lower polarity to 5 ) higher
polarity). The mapping of all protein amino acids is shown
in Figure 1.

Nonbonded Interactions. All particle pairs i and j at
distance rij interact via a Lennard-Jones (LJ) potential:

VLennard-Jones(rij)) 4εij[(σij

rij
)12

- (σij

rij
)6] (1)

The strength of the interaction, determined by the value
of the well depth εij depends on the interacting particle types.
The value of ε ranges from εij ) 5.6 kJ/mol for interactions
between strongly polar groups to εij ) 2.0 kJ/mol for
interactions between polar and apolar groups mimicking the
hydrophobic effect. The effective size of the particles is
governed by the LJ parameter: σ ) 0.47 nm for all normal
particle types. For the special class of particles used for
ringlike molecules, slightly reduced parameters are defined
to model ring–ring interactions: σ ) 0.43 nm and εij is scaled
to 75% of the standard value. The full interaction matrix
can be found in the original publication.23 In addition to the
LJ interaction, charged groups (type Q) bearing a charge q
interact via a Coulombic energy function with a relative
dielectric constant εrel ) 15 for explicit screening:

Vel )
qiqj

4πε0εrelrij
(2)

To avoid generation of unwanted noise, the nonbonded

Figure 1. Coarse-grained representation of all amino acids.
Different colors represent different particle types.
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potential energy functions are used in their shifted form, in
which both the energy and force vanish at the cutoff distance
rcut ) 1.2 nm. The LJ potential is shifted from rshift ) 0.9
nm to rcut. The electrostatic potential is shifted from rshift )
0.0 nm to rcut. Shifting of the electrostatic potential in this
manner mimics the effect of a distance-dependent screening.
Nonbonded interactions between nearest neighbors are
excluded.

Bonded Interactions. Bonded interactions are described by
the following set of potential energy functions acting between
bonded sites i, j, k, and l with equilibrium distance db, angle
φa, and dihedral angles ψd and ψid:

Vb )
1
2

Kb(dij - db)
2 (3)

Va )
1
2

Ka[cos(�ijk)- cos(�a)]
2 (4)

Vd )Kd[1+ cos(nψijkl -ψd)] (5)

Vid )Kid(ψijkl -ψid)
2 (6)

The force constants K are generally weak, inducing flexibility
of the molecule at the coarse-grained level mimicking the
collective motions at the fine-grained level. The bonded
potential Vb is used for chemically bonded sites and the angle
potential Va to represent chain stiffness. The improper
dihedral angle potential Vid is used to prevent out-of-plane
distortions of planar groups. Proper dihedrals Vd are used to
impose secondary structure of the peptide backbone. It is
important to note, therefore, that in the current parametriza-
tion conformational changes of protein secondary structure
are not adequately modeled.

2.2. Mapping of the Amino Acids. The mapping of all
20 amino acids is depicted in Figure 1 and presented in Table
1. Most amino acids are mapped onto single standard particle
types in a similar way as was done recently by other
groups.33,34 The apolar amino acids (Leu, Pro, Ile, Val, Cys,
and Met) are represented as C-type particles, the polar
uncharged amino acids (Thr, Ser, Asn, and Gln) by P-type
particles, and the amino acids with small negatively charged
side chains as Q-type (Glu and Asp). The positively charged
amino acids Arg and Lys are modeled by a combination of
a Q-type particle and an uncharged particle. The bulkier ring-
based side chains are modeled by three (His, Phe, and Tyr)
or four (Trp) beads of the special class of ring particles. The
Gly and Ala residues are only represented by the backbone
particle. The type of the backbone particle depends on the
protein secondary structure (see Table 2); free in solution
or in a coil or bend, the backbone has a strong polar character
(P type); as part of a helix or � strand, the interbackbone
hydrogen bonds reduce the polar character significantly (N
type). Proline is less polar due to the lack of hydrogen-donor
capabilities.

The most appropriate choice of particle types for the amino
acids was assessed from a comparison between simulation
results and experimental measurements of the water/oil
partitioning coefficients of the amino acid side-chain ana-
logues. The partitioning behavior and amino acid mapping
are summarized in Table 1. Simulation data are calculated
from equilibrium densities of low concentrations of CG beads

dissolved in a water/butane two-phase system. The free
energy of partitioning between oil and aqueous phases,
∆Goil/aq, was obtained from the equilibrium densities F of CG
particles in both phases:

∆Goil/aq ) kT ln(Foil

Faq
) (7)

The equilibrium densities can be obtained directly from a
long MD simulation of the two-phase system in which small

Table 1. Mapping of the Amino Acids and Free Energy of
Partitioning between Water and Butane (Calculated) or
Water and Cyclohexane (Experimental Measure40,41)

free energy
(kJ/mol)

side chain
CG

representation
mapping
schemea CG exptl.

Leu C1b 22 22
Ile C1b 22 22
Val C2b 20 17
Pro C2b 20
Met C5 9 10
Cys C5 9 5
Ser P1 -11 -14
Thr P1 -11 -11
Asn P5 < –25 -28
Gln P4 -23 -25
Asp Qa < -25
Asp

(uncharged)
P3 –18 -19

Glu Qa < –25
Glu

(uncharged)
P1 –11 –11

Arg N0-Qd N0: C�-Cγ-
Cδ-Nε

< –25

Arg
(uncharged)

N0-P4 Qd/P4: C	-
Nω1-Nω2

–23 –25

Lys C3-Qd C3: C�-
Cγ-Cδ

< –25

Lys
(uncharged)

C3-P1 Qd/P1: Cε-Nω –1 –2

His SC4-SP1-
SP1

SC4: C�-
Cγ

-19 -20

SP1: Cδ-Nε
SP1: Nδ-Cε

Phe SC4-SC4-
SC4

SC4: C�-
Cγ-Cδ1

19 17

SC4: Cδ2-
Cε2

SC4: Cε1-
C	

Tyr SC4-SC4-
SP1

SC4: C�-
Cγ-Cδ1

-1 -2

SC4: Cδ2-
Cε2

SP1: Cε1-
C	-OH

Trp SC4-SP1-
SC4-SC4

SC4: C�-
Cγ-Cδ2

12 9

SP1: Cδ1-
Nε-Cε1

SC4: Cε2-
C	2

SC4: Cε1-
Cω

a The mapping scheme is reported only for amino acid side
chains consisting of more than one CG particle. b For the C1 and
C2 particle types of the amino acids, the interaction with Q
particles has been modified from the standard MARTINI force
field. In order to avoid clashes between these particle pairs, the
Lennard-Jones parameter σ has been restored from 0.62 nm to
the standard value of 0.47 nm.
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amounts (around 0.01 mol fraction proved sufficient to be
in the limit of infinite dilution) of the target substance are
dissolved. With the CG model, simulations can easily be
extended into the multi-microsecond range, enough to obtain
statistically reliable results to within 1 kJ/mol for most
particle types. The experimental data40,41 are for partitioning
between water and cyclohexane. Both the simulation and the
experimental data are obtained at 300 K. The experimental
values could be reproduced to within 2 kT, except for the
charged amino acids for which no experimental data exist.
For some amino acids, especially those consisting of multiple
CG beads, more than one assignment scheme would lead to
similar partitioning free energies. In those cases, the results
obtained for the potential of mean force (PMF) calculations
(see section 3.1) were used to select the optimal assignment.

2.3. Parameterization of Bonded Interactions. In Figure
2, the intra amino acid bonded potentials are indicated for
the different geometric classes of amino acids (containing
either one, two, three, or four side-chain beads plus one
backbone bead). The bond lengths, bond angles, dihedral
angles, and their respective force constants, collectively
referred to as the bonded parameters, were obtained from
distributions derived from the PDB. We chose a representa-
tive subset of approximately 2000 proteins from the PDB
as the basis set for our parametrization. The secondary
structure of every residue of these proteins was determined
using the program DSSP.42 Using the center of mass of the
atoms representing each coarse-grained bead, we calculated
the distributions of the bond lengths, bond angles, and
dihedral angles, as shown in Figure 2, for all combinations
of amino acids and secondary structures. To ensure that the
basis set was truly representative of the entire PDB, we
calculated some of the distributions for a different subset of
the PDB and found the results to be virtually identical. We

also calculated some of the distributions for a membrane
protein subset (∼200 proteins) and again found the results
to be nearly indistinguishable from the original basis set.
Additional approaches to calculate the distributions were also
attempted, such as using a representative atom instead of
the center of mass of the coarse-grained bead. We found
that using the center of mass was the most appropriate and
robust approach, in line with the general coarse-graining
philosophy to represent groups of atoms by an effective
particle positioned at their center of mass. After the distribu-
tions were obtained, simulations were performed on short
test peptides, with different sequences and secondary struc-
ture characteristics, and also on larger proteins. All of the
bonded parameters were optimized by matching the PDB
distributions of the bonds angles and dihedrals with the
distributions obtained from the simulations, using an iterative
procedure. Representative PDB distributions are shown in
Figure 3.

The characteristics of the PDB distributions enabled us to
make some approximations, so that the number of tunable
parameters was kept at a manageable number without
compromising the accuracy. The DSSP definition includes
eight secondary structures, namely, helix, extended, bend,
turn, beta, 310-helix, π-helix, and unstructured (random coil).
All beta structures were approximated as extended, while
the 310-helix and π-helix were approximated as R-helices.
The backbone-backbone bond lengths were all set to be 0.35
nm irrespective of secondary structure. The backbone
parameters, that is, the bonds, angles, and dihedrals involving
only backbone beads, were set to be dependent on the
secondary structure of the beads but independent of the amino
acid. Backbone-side-chain (and side-chain-side-chain, where
appropriate) bond lengths and force constants were amino
acid dependent, but independent of the secondary structure.
Backbone-backbone-side-chain and backbone-side-chain-
side-chain bond angles and force constants were independent
of both the secondary structure and amino acid. Table 3
summarizes the backbone bonded parameters. The force
constants in Table 3 correspond to cases where all of the
beads involved have the same secondary structure. When a
backbone bonded parameter (either a bond or an angle)
involves beads with more than one type of secondary
structure, the weaker force constant is used. Dihedral angles
were imposed only when all four interacting beads had
the same secondary structure (either helix or extended). Table
4 summarizes the bond lengths and corresponding force
constants for all of the side chains. Table 5 summarizes the
bond angles for the side chains.

2.4. Simulation Parameters. The simulations described
in this paper were performed with the GROMACS simulation
package, version 3.3.1.43 The topologies, parameters, and
example input files of the applications described in this paper
are available at http://md.chem.rug.nl/∼marrink/coarsegrain.
html. Scripts to generate topologies for arbitrary proteins are
also downloadable. The general simulation parameters used
in the applications described below are as follows. The
temperature for each group (lipids, water, and proteins) was
kept constant using the Berendsen temperature coupling
algorithm44 with a time constant of 1 ps. Semi-isotropic

Table 2. Backbone Particle Type in Different Kinds of
Secondary Structurea

backbone
coil

bend free helix
helix

(N-terminus/C-terminus)
�-strand

turn

backbone P5 N0 Nd/Na Nda
Gly P5 N0 Nd/Na Nda
Ala P4 C5 N0 N0
Pro Na C5 N0/Na N0

a Both glycine and alanine have no side chain.

Figure 2. Schematic representation of the four different
geometrical classes of amino acids, consisting of either one,
two, three, or four beads for the side chain (plus a backbone
bead). Intra- and interamino acid bonded potentials are
indicated. Backbone beads are indicated by “B” and side-chain
beads by “S.”
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pressure coupling was applied using the Berendsen algo-
rithm,44 with a pressure of 1 bar independently in the plane
of the membrane and perpendicular to the membrane. A time
constant of 5.0 ps and a compressibility of 4.5 × 10-5 bar-1

was used. Bond lengths in aromatic amino acid side chains
and the backbone-side-chain bonds for Val, Ile, and Thr
were constrained with the LINCS algorithm to avoid nu-
merical instabilities arising from fast fluctuations. Due to the
use of shifted potentials, the neighbor list can be updated
every 10 steps using a neighbor list cutoff equal to rcut )
1.2 nm. For reasons of computational efficiency, the mass
of the CG beads is set to 72 amu (corresponding to four
water molecules) for all beads, except for beads in ring
structures, for which the mass is set to 45 amu. Using this
setup, the systems described in this paper can be simulated
with an integration time step of 25 fs, which corresponds to
an effective time of 100 fs. In the remainder of the paper,
we will use an effective time rather than the actual simulation
time unless specifically stated. The CG dynamics are faster
than the all-atom dynamics because the CG interactions are
much smoother compared to atomistic interactions. The
effective friction caused by the fine-grained degrees of
freedom is missing. On the basis of comparison of diffusion
constants in the CG model and in atomistic models, the
effective time sampled using CG interactions is 3–8-fold

larger. When interpreting the simulation results with the CG
model, a standard conversion factor of 4 is used, which is
the effective speedup factor in the diffusion dynamics of CG
water compared to real water. The same order of acceleration
of the overall dynamics is also observed for a number of
other processes, including the permeation rate of water across
a membrane,22 the sampling of the local configurational space
of a lipid,45 and the aggregation rate of lipids into bilayers22

or vesicles.43 However, the speedup factor might be different
in other systems or for other processes. Particularly for

Figure 3. Representative distributions from the PDB. (a) Backbone-backbone bond distributions for helices, random coils, and
extended configurations. (b) Backbone-backbone-backbone angle distributions for helices, random coils, and extended
configurations. (c) Backbone-backbone-backbone-backbone dihedral angle distributions for helices, random coils, and extended
configurations. (d) backbone-side-chain bond distributions for selected aminoacids. (e) Backbone-backbone-side-chain angle
distributions for selected amino acids.

Table 3. Backbone Bonded Parameters

backbone
dBB

(nm)

KBB

(kJ nm-2

mol-1)
θBBB

(deg)
KBBB

(kJ mol-1)
ψBBBB

(deg)
KBBBB

(kJ mol-1)

helix 0.35 1250 96a 700 60 400
coil 0.35 200 127 25
extended 0.35 1250 134 25 180 10
turn 0.35 500 100 25
bend 0.35 400 130 25

a θBBB ) 98° when Proline is in the helix; KBB ) 100 kJ mol-1.

Table 4. Equilibrium Bond Length and Force Constants for
Each Amino Acid Side Chain

side chain d (nm) K (kJ nm-2 mol-1)

Leu 0.33 7500
Ile 0.31 constraint
Val 0.265 constraint
Pro 0.30 7500
Met 0.40 2500
Cys 0.31 7500
Ser 0.25 7500
Thr 0.26 constraint
Asn 0.32 5000
Gln 0.4 5000
Asp 0.32 7500
Glu 0.4 5000
Arg dBS 0.33 5000
Arg dSS 0.34 5000
Lys dBS 0.33 5000
Lys dSS 0.28 5000
His dBS 0.32 7500
His dSS 0.27 constraint
Phe dBS 0.31 7500
Phe dSS 0.27 constraint
Tyr dBS 0.32 5000
Tyr dSS 0.27 constraint
Trp dBS 0.3 5000
Trp dSS 0.27 constraint
Cys-Cys dS-S 0.39 5000
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protein systems, no extensive testing of the actual speedup
due to the CG dynamics has been performed, although
protein translational and rotational diffusion was found to
be in good agreement with experimental data in simulations
of membrane-embedded rhodopsins using a preliminary
version of our CG model.36 In general, however, the time
scale of the simulations has to be interpreted with care.

3. Results

3.1. Partitioning of Amino Acid Side Chains in a
DOPC Bilayer. The PMF was calculated for each side chain
as a function of the distance from a dioleoylphosphatidyl-
choline (DOPC) bilayer. The results are compared to PMFs
obtained at identical conditions and calculated using an
analogous procedure from atomistic simulations performed
by MacCallum et al.46,47 The DOPC bilayer contained 72
lipids and 1200 water particles (corresponding to 67 real
waters/lipid; excess hydration was chosen to ensure bulk
properties of the aqueous phase). While, in principle, the
PMF of each side chain analogue can be calculated from
unbiased simulations, we used the umbrella sampling
method,48 because unbiased simulations give poor statistics
for most side-chain analogues (results not shown) even at
simulation times of tens of microseconds. The biasing
potential was added to force the CG side chains to sample
the region of interest. A series of 46 separate simulations
was performed in which the side-chain analogue was
restrained to a given distance from the center of the bilayer
by a harmonic restraint on the z coordinate only. The spacing
between the centers of the biasing potentials was 0.1 nm,
and a force constant of 1000 kJ mol-1 nm-2 was used in all
simulations. In each simulation, we placed two side-chain
analogues at a distance of 4.5 nm from each other, in order
to improve the sampling at practically no additional com-
putational cost. Each of the simulations was 200-ns-long,
for a total of 9.2 µs per PMF. After the simulations were
completed, unbiased PMFs were extracted using the weighted
histogram analysis method.49

Figure 4 shows PMF profiles for all 20 side-chain
analogues, grouped into hydrophobic, polar, charged, and
aromatic pairs of amino acids. In the CG model, the
following amino acid side chains are each represented by
the same particle type: leucine and isoleucine, valine and
proline, cysteine and methionine, and serine and threonine;
this choice seems reasonable because atomistic PMFs for
these amino acid side chains are similar. The agreement
between atomistic and CG PMFs is excellent for hydrophobic

amino acids, showing a decrease in the free energy of the
system when the side chains enter the bilayer interior. The
free energy difference between bulk water and the center of
the bilayer is 15 and 17 kJ/mol, respectively, for atomistic
and CG leucines, and is 14 and 15 kJ/mol, respectively, for
atomistic and CG valines. A free-energy barrier in the
proximity of the lipid headgroup region is present in the PMF
profiles of most of the hydrophobic residues. This barrier is
also well-reproduced in our model for leucine, isoleucine,
and valine, with a difference of less than 1 kJ/mol compared
to atomistic simulations. For tryptophan and tyrosine, the
barrier is not present in the atomistic profiles and is less than
5 kJ/mol in CG profiles. All aromatic residues show a free-
energy minimum in the proximity of the interface region of
the bilayer. The agreement with atomistic profiles is very
good, and the minima have a free energy of -21 and -15
kJ/mol for tryptophan and tyrosine, respectively. PMF
profiles for polar amino acids also show a reasonable
agreement between atomistic and CG force fields, with higher
energies at the center of the bilayer. Only the charged
residues show a relatively large difference between the
atomistic and CG representation; in all cases, the free-energy
penalty for having the residue inside the membrane is
underestimated by the CG force field but is still very high

Table 5. Equilibrium Angles, Improper Dihedral Angles
and Force Constants for Side Chains

side chain θ (deg) K (kJ mol-1)

θBBS (all) 100 25
θBSS (Lys, Arg) 180 25
θBSS (His, Tyr, Phe) 150 50
θBSS (Trp) 90, 210 50, 50

side chain ψ (deg) K (kJ rad-2 mol-1)

ψBSSS (His, Tyr, Phe) 0 50
ψBSSS (Trp) 0, 0 50, 200

Figure 4. PMF for 16 amino acid side-chain analogues.
Results for atomistic simulations (from ref 46) are shown in
black, CG model in red.
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(over 40 kJ/mol for glutamate, aspartate, and arginine, and
over 35 kJ/mol for lysine); therefore, the probability of the
residues entering the bilayer is negligible. The strong
interfacial absorption of the positively charged amino acids
predicted from the atomistic simulations is not so well
reproduced by the CG force field, and there is room for
improvement. Note that solvation free energies in commonly
used atomistic force fields show errors up to 8 kJ/mol,50 with
a similar level of accuracy for the free energies of transfer
from water to cyclohexane.51 On the basis of these com-
parisons, it appears that free energies of partitioning obtained
with our coarse-grained model reproduce satisfactorily the
results obtained with atomistic models.

3.2. Amino Acid Association Constants. To evaluate the
quality of the side-chain-side-chain interactions in the CG
force field, association constants between residue pairs were
computed and compared to results from atomistic simula-
tions. The pairs Lys/Glu and Leu/Leu, chosen to be
representative for salt-bridge and hydrophobic interactions,
were placed in a box with 240 CG water particles (960
atomistic water molecules) and run for 4 µs at T ) 300 K
and an isotropic pressure of 1 bar. To avoid freezing of the
CG water as a consequence of the small system size (which
artificially increases the long-range order), 10% of the water
molecules were replaced by antifreeze particles.23 The
association constant Kij between two amino acids i and j can
be estimated by52

Kij )
1
C

×
Pbound

Pfree
(8)

where 1/C is a factor correcting for the concentration of the
species in the system, and P(X) is the probability of finding
the complex in the X state.53 Here, C ) 1/(NAV), where NA

is Avogadro’s number and V is the volume of the box. The
bound and unbound states were differentiated by calculating
the solvent accessible surface area (ASA) of the complex.
A value of the solvent ASA below a given cutoff indicates
that the two residues are in contact, whereas above the same
cutoff, the residues are free in solution. The cutoff was
chosen from the histogram distribution of the ASA for each
simulation at the minimum between the two states. Associa-
tion constants obtained with the CG model and with atomistic
simulations52,54 are listed in Table 6. The similarity of the
values suggests that the contacts observed in the CG model
are of reasonable strength. It is especially important that the
ratio between hydrophobic and salt-bridge interactions is
similar for the all-atom and CG models. Note that the CG
model underestimates the strength of these interactions,
although only slightly.

3.3. Partitioning and Orientation of Pentapeptides. The
series of pentapeptides with sequence Ace-WLXLL was

studied by White and Wimley in order to determine an
experimental hydrophobicity scale for proteins at membrane
interfaces.55 These peptides are known to partition to the
interface region of a zwitterionic membrane, without pen-
etrating into the hydrocarbon core. We simulated a series of
15 pentapeptides with the amino acid sequence Ace-WLXLL,
where X is Ala, Arg, Cys, Glu, Gly, His, Ile, Leu, Met, Phe,
Pro, Thr, Trp, Tyr, and Val, using both the ffgmx force field
as implemented in GROMACS56 and our CG model. Sim-
ulations were carried out in a water/cyclohexane system in
the case of the all-atom model, while water/octane was used
in the case of the CG model. The Ace group was not present
in the CG simulations. No secondary structure was imposed
on the peptides. The appropriate particle type P5 was used
for the backbone in all peptides (see Table 2). All atomistic
simulations were run for 40 ns, while CG simulations were
run for 1.5 µs.

We compared the conformation and the partitioning of the
whole peptide, as well as the position of residues W1, X3,
and L5 relative to the water-alkane interface. Figure 5 shows
three of the simulated systems, both at full atomic detail and
at the CG level, with isoleucine, phenilalanine, and arginine
as central residues. On the basis of backbone angles and
head-to-tail distances, all peptides are found mainly in

Table 6. Association Constant of Leu-Leu and Lys-Glu
Residue Pairs Obtained Using the CG and Atomistic Model

association constant (M-1)

CG atomistic

Leu-Leu 3.0 ( 0.3 6.6a

Lys-Glu 5.7 ( 0.6 10.8b

a Yang and Elcock.54 b Thomas and Elcock.52

Figure 5. Pentapeptides Ace-WL-X-LL in a water/cyclohex-
ane box in the atomistic representation (left) and WL-X-LL
peptide in a water/octane box in the CG representation (right).
The peptide is shown in red, with the central residue X in
green, water in blue, and the alkane in yellow. Pentapeptides
with isoleucine, phenylalanine, and arginine are shown.
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extended conformations, both in atomistic and in CG
simulations. In all cases, the peptides partition to the water/
alkane interface, consistent with experimental observations.
The distributions of the peptides and of single amino acids
were evaluated by comparing density profiles. Density
profiles for W1, X3, and L5 in CG simulations are similar
to those for atomistic simulations for all residues. The peak
of the distribution is in the alkane phase for the hydrophobic
amino acids and in water for the polar ones, as expected.
The average positions relative to the interface show minor
differences between atomistic and CG amino acids, lower
than 0.1 nm. For the CG model, the density of octane is
about 0.77, consistent with the value previously published22

and close to the experimental value.
3.4. Tilt and Orientation of Helical Peptides. WALP

and KALP peptides have sequences consisting of leucine-
alanine repeats, flanked by either two tryptophan residues
(WALP) or two lysine residues (KALP) at the N terminus
and at the C terminus. These model peptides were designed
by Killian and co-workers to investigate the effect of
hydrophobic mismatch (the difference between the hydro-
phobic length of the peptide and the hydrophobic width of
the lipid) on the properties of zwitterionic membranes.57,58

The peptides partition into lipid bilayers and assume a
transmembrane orientation, with a tilt angle dependent on
the extent of mismatch.59 We investigated the behavior of
WALP and KALP peptides, comparing results obtained with
the CG model both to experimental data and to simulations
performed with various all-atom force fields.

WALP23 in a DOPC Bilayer. In the first set of simulations,
we analyzed the tilt and orientation of a WALP23 peptide
embedded in a DOPC lipid bilayer containing 72 lipids. We
used the same starting conformation (fully R-helical) and
orientation (transmembrane, ∼0° tilt relative to the bilayer
normal) for the atomistic and CG simulations. In atomistic
simulations, both the GROMACS (ffgmx)56 and the OPLS-
AA force field60 were used for the peptide; details can be
found elsewhere.61 Two simulations were carried out with
each atomistic force field, and the simulation time was 60
ns for each simulation. One simulation was carried out with
the CG force field for 800 ns. For both the atomistic and
CG simulations, the temperature was coupled to 300 K and
the pressure to 1 bar in the normal and lateral dimensions.

In atomistic simulations, the N-terminal tryptophan side
chains are generally found in the proximity of the carbonyl
groups of DOPC, while the C-terminal ones are slightly
closer to the center of the bilayer. This is consistent with
experimental results obtained by fluorescence spectroscopy62

and mass spectrometry.63 The tilt angle of the peptide,
defined as the angle between the helical axis and the
membrane normal, was monitored throughout the simula-
tions. The helix axis was calculated as the first eigenvector
of the inertia tensor of the backbone particles. The autocor-
relation time of the tilt angle is in the range of tens of
nanoseconds, indicating that longer simulations would be
required to sample equilibrium distributions. Atomistic
simulations of identical systems performed with different
initial velocities yielded very different distributions and
different averages for the tilt angle, with values of 12 ( 5°

and 27 ( 6° in the case of the ffgmx force field and 13 (
6° and 17 ( 6° for OPLS-AA. The distributions of tilt angles
for individual trajectories show the presence of multiple
peaks, suggesting that the peptide orientation “jumps”
between different arrangements and intermediate orientations
are not sufficiently sampled. This indicates that limited
sampling impairs predictions of protein orientation in
membranes achievable by atomistic simulations. Distributions
of the tilt angle for the concatenated trajectories are shown
in Figure 6a (atomistic) and b (CG). The average values
found in the simulations are significantly larger than those
reported from experimental measurements using the GALA
method.59 While the apparent discrepancy can be solved
through a different interpretation of the results obtained with
the GALA method,64,65 in the present work, we focus on
the comparison between atomistic and CG simulations.

Similarly to the case of atomistic simulations, also in the
CG simulations, the average position of the tryptophans is
consistent with experiments. Tryptophan side chains are
found in the proximity of the GL1 and GL2 particles of
DOPC, corresponding approximately to the glycerol and the
carbonyl groups of the lipid. Compared to atomistic models,
the C-terminal residues appear to be, on average, slightly

Figure 6. Normalized distributions of tilt angles (angle
between the helical axis and the normal to the membrane) in
simulations of the WALP23 monomer and dimer in DOPC,
using atomistic (a) and CG (b) models. Helix-helix distance
in WALP23 dimers in DOPC in atomistic (c) and CG (d)
simulations. Atomistic (e) and CG (f) peptides are shown in
red and green, with the lipids in yellow and water in blue.
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closer to the hydrophobic portion of the membrane. A broad
distribution of tilt angles is observed (see Figure 6b), with
an average tilt angle of 11 ( 6°. Contrary to the atomistic
simulations, the tilt angles obtained from independent CG
simulations were reproduced within one standard error. Given
the sampling issues for the atomistic force field, the agree-
ment is reasonable. The autocorrelation time for reorientation
of the helical axis is significantly shorter than in the atomistic
case (about 3 ns), however. This might point to different
kinetic barriers for reorientation of the tryptophan residues
near the interface.

KALP Peptides in DLPC and DPPC Bilayers. Recently,
a systematic investigation of hydrophobic mismatch, using
KALP peptides and PC lipids of different lengths, was
performed using atomistic MD simulations.66 For negative
mismatch, when the hydrophobic length of the peptide is
smaller than the hydrophobic width of the lipid, a small tilt
angle of ∼10° was observed. For systematically increasing
positive mismatch, a monotonic increase in tilt angles was
observed. To compare with these results, CG KALP peptides
of different lengths (KALP15, KALP19, KALP23, KALP27,
and KALP31) were inserted in DLPC and DPPC membranes
consisting of 128 lipids each. The temperature of 310 K and
zero surface tension of the membrane match the conditions
of the atomistic simulations. Simulations were performed for
200 ns, and the tilt behavior was monitored. The average
tilt angles were calculated over the last 100 ns of the
simulations. The results are shown in Figure 7, where the
tilt angle is shown as a function of mismatch. Snapshots from
the atomistic and coarse-grained simulations of KALP31 in
DLPC membranes are also shown. Here, the hydrophobic
length of the peptide is the distance between the backbone
atoms of the first and the last leucine atoms of the peptide,
and the hydrophobic width of the lipid is the average distance
between the first hydrophobic bead of the lipids in the two
leaflets, and the hydrophobic mismatch is the difference
between the two. The CG simulations match the trend of
the atomistic simulations remarkably well, showing a small
tilt angle under negative mismatch and a monotonic increase
in tilt angles under positive mismatch.

3.5. Helix-Helix Interactions. Recent experimental evi-
dence suggests that the WALP23 aggregates in DOPC lipid
bilayers and forms oligomers of small size if the peptide/
lipid ratio is higher than 0.04.62 We simulated WALP23
dimers in DOPC lipid bilayers in order to compare their
stability in atomistic and CG models. All simulation condi-
tions and methodology were identical to the case of the
monomers. We used the same two protein force fields,
namely, GROMACS (ffgmx) and OPLS-AA, as in simula-
tions reported above. Two simulations were run for each
atomistic force field, using the same starting structures and
different seed numbers for the initial velocities. We also
carried out two simulations using the CG force field. The
simulation time was 50 ns for each atomistic simulation and
4 µs for each CG simulation. An antiparallel arrangement
of the helices was adopted in all of the simulations. This
orientation has been proposed to be favored over the parallel
one due to favorable electrostatic interactions between

R-helix backbone atoms.62 The simulated systems are
represented in Figure 6 (panels e and f).

In order to assess the stability of the dimers, we monitored
the distance between the center of mass of the helices as a
function of simulation time (see Table 7 and Figure 6).
Helix-helix distances of 0.83 and 0.75 nm were found in
the atomistic and CG simulations, respectively, indicating
that the dimers are stable in both cases. As in the monomer
simulations, also in this case, the peptides are displaced
relative to the center of the membrane, with the C-terminal

Figure 7. Coarse-grained and atomistic simulations of KALP
peptides. (a) The tilt angles are shown as a function of
hydrophobic mismatch for the atomistic and CG simulations.
In panels b-e, snapshots at the end of the CG simulations
are shown. Water is shown as blue spheres, the phosphate
group of the lipids as red spheres, the peptide as a pink
backbone trace, and the lipids as grey lines. In each of the
panels, the peptide from the corresponding atomistic simula-
tion, shown as a green helix, is overlaid on top of the CG
peptide for comparison. The phosphorus atoms of the lipids
from the atomistic simulations are also show for reference:
(b) KALP19 peptide in DLPC lipids, (c) KALP23 peptide in
DLPC lipids, (d) KALP27 peptide in DLPC lipids, and (e)
KALP31 peptide in DLPC lipids.
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tryptophan side chains closer to the membrane interior. The
distributions of tilt angles are shown in Figure 6 (panels a
and b). Similarly to the monomer case, also for the dimers,
the distributions show multiple peaks for atomistic simula-
tions, highlighting insufficient sampling. On the contrary,
distributions obtained with the CG force field are well-
converged, with average values for the helix-helix distance
and the tilt angles reproduced (within one standard error) in
two independent simulations. We notice that the average
values of the tilt angle are lower in CG simulations, both
for the monomer and for the dimer simulations.

3.6. Partitioning of Hydrophobic Peptides in Lipid
Bilayers. Most peptides that partition into lipid membranes
exhibit an equilibrium between the transmembrane and the
interfacial orientation. Hydrophobic peptides, of lengths
comparable to the hydrophobic widths of the lipid bilayer,
assemble predominantly into a transmembrane orientation.
However, either decreasing the length of the peptide or
reducing its hydrophobicity will increase the fraction of the
peptides with the interfacial orientation. Hydrophobic polyleu-
cine peptides, with their termini capped by lysines, are highly
helical and partition into a predominantly transmembrane
orientation in phospholipid bilayers. Substituting some of
the leucines with alanines reduces the hydrophobicity of the
peptide and should increase the fraction of interfacially bound
peptides. In principle, very long simulations should capture
the transitions between the transmembrane and interfacial
orientations of the peptides. However, even with the CG
model, extremely long simulations are required to adequately
sample the transitions and obtain meaningful estimates of
the transmembrane and interfacially bound fractions. Alter-
natively, a large number of self-assembly simulations,67

where a peptide is placed in a random mixture of lipids and
water and quenched, can yield a reliable estimate of the
transmembrane and interfacially bound fractions, which can
be used to calculate a partitioning free energy.

We performed systematic self-assembly simulations of
hydrophobic lysine-terminated, polyleucine-alanine pep-
tides in DPPC bilayers. First, six polyleucine peptides,
KK(LLLL)nKK were constructed, with n ranging from 1 to
6. Then, the following alanine mutants were created for each
value of n: KK(LLLA)nKK, KK(LALA)nKK, KK(LAAA)n-
KK, and KK(AAAA)nKK. This gave us a total of 30 peptides
with varying lengths and degrees of hydrophobicity. For each
of the 30 peptides, 200 independent self-assembly simulations
were performed, giving a total of 6000 simulations. In each

of the simulations, a single peptide was inserted in a random
orientation into a cubic box containing a mixture of 128
DPPC lipids and 1500 CG water molecules in a random
arrangement. Then, a self-assembly simulation was per-
formed at 323 K using anisotropic pressure coupling. For
this system size, and lipid/water ratio, a bilayer typically
forms in about 20 ns. We carried out all of the simulations
for 200 ns, providing sufficient time for bilayer self-assembly
to occur and for the peptide to partition either to the
membrane interior or at the interface or in the water phase.
Occasionally, the self-assembly simulation leads to a non-
bilayer phase, typically due to one dimension of the sim-
ulation cell shrinking rapidly because of the anisotropic
pressure coupling. However, this was observed for <2% of
all the cases, and these simulations were not included in the
partitioning statistics. For all of the simulations which lead
to a bilayer phase (>98% of the simulations), the coordinate
at 200 ns was visualized and the partitioning state of the
peptide was noted. A total of 1.2 ms of data were generated
from these simulations.

We show the interfacial/transmembrane partitioning frac-
tion as a function of peptide length in Figure 8. A priori, we
should expect the interfacial fraction to increase as the
peptide length is reduced and the alanine content is increased.
This is confirmed by our simulations, as seen in Figure 8. It
is remarkable that the trends one would expect upon
increasing the peptide length and hydrophobicity are faith-
fully generated. We also observed that the shorter and less-
hydrophobic peptides partition into the water phase in
significant numbers, as one would expect. The statistics on
partitioning into the water phase are too limited to draw more
quantitative conclusions. Our results show that the CG model
is sensitive enough to capture even minor mutations in the
peptide sequence.

3.7. Transmembrane Pores Formed by Antimicrobial
Peptides. AMPs are short, cationic, amphipathic peptides that
interact with the lipid component of the cell membranes.
Magainin-H2 is one of the most well-characterized AMPs,
using experimental studies.68,69 Several biophysical studies
have suggested that, at low concentrations, the peptides adopt
a surface orientation at the lipid/water interface and, at higher
peptide concentrations, the peptides can form toroidal
transmembrane pores.68 However, the exact size and shape

Table 7. Interhelical Distance and Tilt Angles in the
Simulations of the WALP23 Peptide Dimer in DOPC, in
Both Atomistic and CG Simulations

simulation
helix-helix
distancea

tilt angleb

(helix1)
tilt angleb

(helix2)

GMX (1) 0.84 ( 0.03° 13.5 ( 4.5° 25.2 ( 4.5°
GMX (2) 0.83 ( 0.04° 9.0 ( 3.5° 24.0 ( 3.5°
OPLS-AA (1) 0.86 ( 0.02° 5.8 ( 3.5° 16.1 ( 4.1°
OPLS-AA (2) 0.78 ( 0.02° 18.9 ( 3.1° 32.3 ( 3.0°
CG (1) 0.71 ( 0.06° 13.6 ( 6.3° 16.0 ( 6.4°
CG (2) 0.70 ( 0.05° 13.7 ( 5.8° 15.4 ( 5.6°

a Distance between the center of mass of backbone atoms, in
nanometers, ( standard deviation. b Angle between the helical
axis and the bilayer normal, in degrees, ( standard deviation.

Figure 8. Partitioning behavior of KK-LmAn-KK peptides of
varying lengths and hydrophobicity.
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of the toroidal pores is still unclear. We performed self-
assembly simulations of single and multiple magainin-H2
peptides using the CG model. The peptides were placed in
a random mixture of 128 DPPC lipids and 1500 water
molecules. The simulations were performed at 323 K and a
pressure of 1 bar. Single peptides almost always partition
into a surface-bound orientation. As the number of peptides
is increased, with the number of lipids kept constant, some
of the peptides partition in a transmembrane orientation. At
even higher peptide/lipid (P/L) ratios (5/128 and higher), the
self-assembly simulations lead to stable toroidal pores. In
Figure 9, we show the final snapshots from two simulations.
Figure 9a shows a single peptide bound to the lipid/water
interface. Figure 9b shows a toroidal pore, stabilized by the
peptides. This structure matches the structures obtained from
atomistic simulations of Leontiadou et al.,70 from which it
was concluded that the toroidal pores are rather disordered.
In agreement with these atomistic simulations, the structure
of the pores formed in the CG simulations differs signifi-
cantly from current idealized models of a toroidal pore.
Instead of multiple peptides lining the pore in a transmem-
brane orientation, we find typically only one or two peptides
near the pore center. The remaining peptides lay close to
the edge of the pore, maintaining a predominantly parallel
orientation with respect to the membrane. The CG model is
thus capable of reproducing the structure of such toroidal
pores, arising from the complex interplay between lipids and
peptides. Note, in the CG model, the helical conformation
of the peptides is enforced by the use of dihedral angle
potentials, whereas in the atomistic simulations, significant
unfolding occurs. Apparently, unfolding is not a prerequisite
for pore formation.

4. Discussion

The potential range of applications of the CG protein model
is very broad. Although the test cases shown in this paper
involve small peptides only, the model is suited to applica-
tions of proteins in general. Processes such as protein
aggregation, the action of antimicrobial peptides, protein-
induced membrane fusion and fission, ligand binding, and

possibly large-scale motions in proteins are amenable to
simulation on length and time scales far beyond those feasible
with all-atom models. Yet, in contrast to many CG protein
models, the resolution at the level of individual amino acids
is retained. Using preliminary versions of this force field,
the self-assembly of membrane-embedded rhodopsins has
already been simulated, for instance,36 showing that the
aggregation is due to a subtle interplay between lipid-
mediated long-range attraction and short-range optimization
of direct protein–protein contacts. Applications from other
groups using similar albeit somewhat simpler models show
applications to lipoprotein particles33 and to a variety of
membrane proteins.34,35

There are, however, certain important limitations which
should be kept in mind. First of all, one has to be aware that
secondary structure transformations are not modeled in the
current parametrization. The secondary structure is essentially
fixed by using angle and dihedral potential energy functions,
allowing discrimination between various secondary structure
elements but preventing realistic transitions between them.
Processes in which the folding and unfolding of secondary
structures are playing a substantial role are therefore not
suitable for modeling with our current CG force field.
Movement of secondary structure elements with respect to
each other is possible, however, and is shown to be quite
realistic in a recent application of the gating of a membrane-
embedded mechanosensitive channel37 and of voltage-gated
potassium channels.38 Second, the model has been param-
etrized for the fluid phase. Properties of solids, such as crystal
packing, are not expected to be accurate. This might also
affect the packing of side chains buried inside proteins, which
are somehow in between a fluid and a crystal state. Fur-
thermore, the parametrization is based on free energies. The
inherent entropy loss on coarse graining is necessarily
compensated for by a reduced enthalpy term. The enthalpy/
entropy balance of many processes is therefore biased when
modeled at the CG level. Consequently, the temperature
dependence is affected, although not necessarily weaker. As
is true for any force field, applications outside the temperature
range used for parametrization (∼270–330 K) have to be
considered with care. Another limitation of our CG model,
and perhaps of most coarse-graining approaches, is the
correct modeling of the partitioning of polar and charged
compounds into a low dielectric medium. Because of the
implicit screening, the interaction strength of polar substances
is underestimated in nonpolarizable solvents. Applications
involving the formation of polar/charged complexes in a
nonpolar environment are especially prone to being affected.
For example, it has been shown in atomistic simulations that
charged residues remain hydrated when they are dragged into
a lipid bilayer.46,71,72 In our coarse-grained representation,
these residues lose their hydration shell at about 0.7 nm from
the center of the bilayer. The difference in hydration leads
to a difference between atomistic and CG free-energy
profiles. In CG simulations, the free energy of the system
increases as charged residues penetrate the lipid bilayer, as
long as they are hydrated, and remains flat in the central
portion of the membrane. In atomistic profiles, on the other
hand, the free energy increases until the residues reach the

Figure 9. Snapshots of the surface partitioning of an
antimicrobial peptide, magainin, at a low concentration (left)
and the formation of a toroidal pore at high concentrations
(right). In these figures, the water molecules are shown as
blue spheres, lipid molecules as grey lines, and the lipid
phosphate groups as red spheres. The backbone traces of
the peptides are shown as sticks (green on the left and several
different colors on the right).
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center of the bilayer. Because of these differences, we suggest
that our CG model would probably show artifacts in
simulations of the movement of polylysine or arginine
domains into lipid bilayers, as is expected for the functioning
of certain ion channel proteins. The same is true, in principle,
for the action of antimicrobial peptides. Here also, charged
residues cross the membrane in one way or another. Despite
this potential limitation, in our simulations of magainin-H2,
the presence of aqueous pores, in which the charged residues
are solvated, makes the problem disappear and explains why
we were able to get realistic results. Apart from the implicit
screening in the CG model, the neglect of long-range
electrostatic forces poses a further potential limitation. Pair-
wise interactions beyond 1.2 nm (between two and three CG
beads away) are not taken into account. In principle, long-
range electrostatic interactions could be added to the CG
model, in similar ways as is done in atomistic simulations.
One has to realize that a modification of the electrostatic
interaction scheme will affect other system properties.

Finally, we would like to stress that the current MARTINI
model for peptides and proteins is a very general model,
designed to be applicable to any class of protein. For any
particular application at hand, one could improve the
parametrization as required. The bonded interactions are
easily fine-tuned on the basis of comparison to either
experimental data or to atomistic models. Another promising
approach is to use elastic-network models on top of the CG
parametrization to mimic the structure and dynamics of a
particular native or non-native state.73 Resolution exchange
strategies (i.e., simulations in which CG and all-atom models
are combined74–77) are promising approaches to further
enhance the accuracy and applicability of CG models such
as the MARTINI protein model described here.

5. Conclusions

In this paper, we presented an extension of the MARTINI force
field to peptides and proteins, enabling simulations of protein
systems in the presence of lipids and surfactants at a coarse-
grained level. The model allows for a speedup of biomolecular
simulations by approximately 3 orders of magnitude compared
to traditional all-atom approaches. Importantly, resolution at the
level of individual amino acids is retained, and solvent is
explicitly taken into account. The protein force field has been
parametrized following the same philosophy as the lipid force
field. Nonbonded interactions were based on experimental
thermodynamic data available for each amino acid. Bonded
parameters were derived systematically from distributions of
bond lengths, angles, and dihedrals in the Protein Data Bank,
allowing for realistic protein conformations to be reproduced.
Numerous tests have been performed to validate the choice of
parameters. Partitioning of all amino acid side chains in a DOPC
lipid bilayer, as well as amino acid association constants, shows
good agreement with atomistic simulations. We also studied
the partitioning and orientation of numerous model peptides in
lipid bilayers: a series of 15 pentapeptides, WALP, KALP, and
30 polyleucine-alanine peptides with different hydrophobicity.
Comparison with atomistic simulations and experimental results
for all of these model systems demonstrates that our CG force
field reproduces the structural and dynamic features of protein–

lipid interactions and captures the effect of mutations in the
peptide sequence. Finally, the formation of hydrophilic (toroidal)
pores in membranes by magainin indicates the great potential
of the model for the study of the mechanism of action of
antimicrobial and pore-forming peptides, as well as protein
aggregation and the effect of peptides and proteins on the
properties of biological membranes.
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Abstract: We present a Monte Carlo sidechain sampling procedure and apply it to assessing
the flexibility of protein binding pockets. We implemented a multiple “time step” Monte Carlo
algorithm to optimize sidechain sampling with a surface generalized Born implicit solvent model.
In this approach, certain forces (those due to long-range electrostatics and the implicit solvent
model) are updated infrequently, in “outer steps”, while short-range forces (covalent, local
nonbonded interactions) are updated at every “inner step”. Two multistep protocols were studied.
The first protocol rigorously obeys detailed balance, and the second protocol introduces an
approximation to the solvation term that increases the acceptance ratio. The first protocol gives
a 10-fold improvement over a protocol that does not use multiple time steps, while the second
protocol generates comparable ensembles and gives a 15-fold improvement. A range of 50-200
inner steps per outer step was found to give optimal performance for both protocols. The resultant
method is a practical means to assess sidechain flexibility in ligand binding pockets, as we
illustrate with proof-of-principle calculations on six proteins: DB3 antibody, thermolysin, estrogen
receptor, PPAR-γ, PI3 kinase, and CDK2. The resulting sidechain ensembles of the apo binding
sites correlate well with known induced fit conformational changes and provide insights into
binding pocket flexibility.

Introduction

Sidechain sampling and optimization algorithms, mostly
based on a rotamer approximation,1–5 have been used
extensively in modeling proteins, including homology
modeling,6,7 and predicting conformational changes due to
ligand binding.8–10 We have been interested in developing
sampling methods for protein sidechains (and, in other work,
loops) that generate thermodynamic ensembles of conforma-
tions, in contrast to locating the global energy minimum.11,12

Minimization methods implicitly neglect the effect of entropy
on sidechain conformations, and generally cannot distinguish
whether sidechains will adopt a single well-defined confor-
mation, or a distribution of conformations. For the many
sidechains that are tightly packed in the core of a protein,
minimization is an effective approach. For less tightly packed

sidechains that display some degree of flexibility, a thermo-
dynamic ensemble becomes a more appropriate description.

Sidechain conformational heterogeneity is important to
protein-ligand binding. The ability to accurately predict the
flexibility/rigidity of binding site residues would be useful
in structure-based drug design.10,13 For example, a recent
paper by Sherman et al.8 describes a computational method
to predict “induced fit” effects upon ligand binding which
relies on some advanced knowledge of which sidechains may
adopt different conformations upon ligand binding, e.g., from
multiple cocrystal structures. We demonstrate here that
thermodynamic ensembles of sidechain conformations in apo
proteins correlate well with known induced fit conformational
changes in various well studied drug targets.

In principle, molecular dynamics sampling methods10,14

can be used to obtain thermodynamic ensembles for protein
binding sites. The main disadvantage is that the timescales
required to observe large changes in sidechain conformations
can be long relative to the ∼1 fs timesteps employed in
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atomically detailed molecular dynamics simulations; transi-
tions between sidechain rotamers can take up to µs, which
is a known difficulty in binding affinity calculations.14–16

Monte Carlo sampling17 can lead to more efficient generation
of the complete thermodynamic ensemble, if the trial moves
are constructed carefully.

For macromolecules, which contain complex, heteroge-
neous, and densely packed atomic configurations, construc-
tion of efficient trial moves can be a substantial challenge.
A variety of both rigorous and nearly rigorous methods have
been used12,18–23 to address this challenge. One common idea
among these involves decomposing the degrees of freedom
into subspaces that are more manageable, both computa-
tionally and conceptually. The most natural decomposition
for proteins is between backbone and sidechain degrees of
freedom. Future work will incorporate backbone motions,
but the current emphasis is on the sidechain sampling.

Another common decomposition is between solvent (wa-
ter) and solute (protein) degrees of freedom. Here we use
an implicit solvent model, which makes it possible to
efficiently sample large sidechain conformational changes.
By contrast, in explicit solvent, large changes (e.g., across
rotamers) are difficult to sample with good acceptance rates
because of steric clashes between waters and the sidechain,
and the need for the solvent to relax around any new trial
conformation. The same steric issues have motivated the use
of implicit solvent in molecular dynamics studies as well.24–26

For this work, the electrostatic solvation term is evaluated
with the SGB model27,28 and the nonpolar solvation energy
with the nonpolar (NP) model.29 The solvation model here
was developed for use with the all atom OPLS-AA 2001
forcefield30 and is implemented in the Protein Local Opti-
mization Program.31,32 While this model is chosen as a
compromise between efficiency and accuracy, it remains the
most computationally expensive portion of the energy
evaluations. The current effort is to develop a general
sampling scheme which allows optimal use of an implicit
solvation model in the context of a Monte Carlo scheme.
The present application is to sidechain sampling, but can be
extended to backbone sampling strategies in a straightforward
manner.

The major innovation here in terms of computational
methods is the implementation of a multiscale strategy,
analogous to methods such as RESPA,33,34 used in molecular
dynamics, to accelerate convergence toward the thermody-
namic ensemble. In this approach, certain forces (primarily
those due to long-range electrostatics and the implicit solvent
model) are updated infrequently, in “outer steps”, while short-
range forces (covalent, local nonbonded interactions) are
updated at every “inner step”. The theory underlying this
approach has been presented previously,35 and is only briefly
reviewed here. The application of a multiscale Monte Carlo
approach to sampling proteins in implicit solvent has been
presented by Michel et al.,36 with different implementation
details and approximations introduced. Other algorithmic
details crucial for speed, including the rapid elimination of
conformations with steric clashes, are also described. The
resultant method is a practical means to assess sidechain

flexibility in ligand binding pockets, as we illustrate with
proof-of-principle calculations on six proteins.

Theory and Methods

Configuration Integral. The implicitly solvated37 mac-
romolecular ensembles of interest can be represented by the
following configuration integral:

Q)∫ dR exp(-�[A(R)]) (1)

where R is the set of all Cartesian coordinates of the
macromolecule of interest, and

A(R))U(R)+G(R) (2)

where A(R) is the sum of the forcefield energy, U(R), and
the implicit solvation energy, G(R). The solvation energy is
dependent on the Born radii, which are a function of the
coordinate state of the macromolecule. In the SGB imple-
mentation we use, the Born radii r(R) are computed using
surface integrals, and thus are dependent on the global
coordinate state R of the protein. This calculation can take
much longer (roughly 100 times longer in cases studied) than
the pairwise energy terms. Some improvements have been
gained by updating only local regions of the surface area as
needed, and efforts are ongoing in this area to improve the
efficiency and accuracy of this model.38,39

In general, however, any attempt to optimize sampling
would benefit most from evaluating the solvation energy less
frequently. While this approach is motivated by computa-
tional efficiency, a physical argument can also be made. The
Born radii generally vary slowly for relatively small, local
conformational changes. The sampling strategies presented
are intended to make the best use of these ideas while still
generating meaningful ensembles.

Constraints on various degrees of freedom can be intro-
duced to generate a configuration integral q0 over a smaller
subspace by identifying fixed (F) and sampled (S) degrees
of freedom, such that dR ) dR<F> dR<S>, and imposing a
rigid constraint on the fixed degrees of freedom, yielding

q0 )∫ dR<S> exp(-�A[(R<S>|R0
<F>)]) (3)

Following the formulation of Deem,20 the transformation
from Cartesian to torsional coordinates can be made with a
Jacobian of unity, if bond lengths and angles are preserved.
For the current work, the backbone torsions will be con-
strained to an initial value of �0, and the fixed sidechains,
to an initial value of �0

<F>. The resulting integral can be recast
as

q0 )∫ d�<S> exp(-�[A(�<S>|�0, �0)]) (4)

where �<S> is the set of sidechain torsional coordinates that
are sampled. The integral of interest over the subspace can
be recast by letting dr ) dR<S> and A(r) ) A(�<F>) )
A(R<S>|R0

<F>), yielding the more compact expression:

q)∫ dr exp(-�[A(r)] (5)

Generation of Trial Configurations. To generate a
reversible trial move, a single sidechain i is chosen at random
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from the list of sampled sidechains and the updated set of
torsions is assigned according to

�i′ ) �i + � (6)

where �i′ and �i are the trial and previous set of dihedral
coordinates, respectively, for sidechain i, and � is a vector
of uniform random variates of the same dimension, for which
each value is drawn from the domain [-d/2, d/2]. To account
for local fluctuations as well as larger fluctuations, the domain
size d is assigned a value of either 360° or 18° with equal
probability. The idea behind the heterogeneous move set is
to alternate between large dihedral trial moves that cross local
� wells, and small trial moves, which sample the local �
basin. For the present work, selections from a rotamer library
are not incorporated as a trial move, as slight nonuniformities
in the distribution of the � angles of the rotamer library have
a quantitative effect on the distributions. As a practical
matter, however, a mixture of rotamer and random moves
could conceivably be implemented if quantitative energy
distributions are not required.

For residues with rotatable polar hydrogen groups (Cys,
Ser, Thr, Tyr), the torsional angle that places the hydrogen
is also selected randomly when the rotamer state is assigned.
Also, the torsions of the amine hydrogens of lysines are
sampled. Torsions for methyl hydrogens are not currently
sampled.

A hard sphere approximation is invoked, which vastly
improves sampling efficiency, while preserving much of the
essential physics of the system. This has been shown in liquid
systems40,41 as well as proteins. For the current work, pairs
of atoms that are closer than 0.7 times the sum of the
Lennard-Jones radii are considered to be sterically disal-
lowed. That is, no energy is computed for sterically disal-
lowed states, because the steric clash will result in high
energies and small acceptance probabilities. Cell lists (linked
lists) further accelerate the identification of steric clashes,
by only checking for clashes between atoms known to be
proximal. A series of dihedral perturbations is generated as
described until a configuration that is sterically allowed is
generated. The resulting configuration is treated as a trial
move. For the systems studied, the average number of
sterically disallowed moves ranges from 0.5 to 0.75 (see
Table 2), which is roughly a 2-4-fold improvement in
sampling efficiency, because the CPU time per steric clash
evaluation is negligible relative to the energy evaluation.

Multiple Time Step Monte Carlo (MTS-MC). A sam-
pling procedure known as multiple time step Monte Carlo,35

which was originally developed for Ewald sum calcula-
tions,42 can be used to optimally sample against a potential
that can be decomposed into additive components. These
components are typically, but not necessarily, short- and
long-range contributions to the energy. The algorithm relies
on the assumption that the short-range term varies rapidly
with respect to the move set, while the long-range term varies
more slowly. A related formalism is presented using ap-
proximate potentials.43 Many algorithms use similar ideas,
including both molecular dynamics integrators33,34 and
minimization algorithms.44 Some applications using algo-
rithms that are similar in spirit involve evaluating Ewald

sums less frequently in fluid simulations with periodic
boundary conditions, sampling of polar fluids,45 and polariz-
able water sampling.46

While the formalisms in these approaches vary, they can
all be thought of as relying on some decomposition of the
overall potential to be sampled. The natural choice of
decomposition, in general, is into short- and long-range
terms, which we denote by subscripts S and L, respectively

A(r))AS(r)+AL(r) (7)

The details of the nature of the decomposition of interac-
tions into long and short-range can vary from system to
system. A more detailed description of the decomposition
for the present case, with proof of detailed balance, is given
in the Appendix.

Using the above decomposition, detailed balance can be
maintained using the following sampling protocol:

(1) Starting with the configuration ri, generate a number
NI of inner loop steps, where each step consists of a trial
configuration rk′ that is generated reversibly (such as the trial
configurations described by eq 6) and accepted according to
the following short-range acceptance criterion:

accS(rk′|rk)

accS(rk|rk′)
) exp(-�[AS(rk′)-AS(rk)]) (8)

(2) Take the final configuration from the inner loop to be
the trial configuration rj for the outer loop and apply the
long-range acceptance criterion:

accL(rj|ri)

accL(ri|rj)
) exp(-�[AL(rj)-AL(ri)]) (9)

It is important to note that any statistical quantities of interest
can only be computed using the outer loop configurations.
In all cases where the ratio of acceptance probabilities are
given, the Metropolis acceptance criterion is used in practice.

Recasting MTS-MC to Account for Infrequent Born
Radii Updates. For the present case, the most costly term
to evaluate in the energy is the solvation term, which is due
largely to the time intensive step of computing the Born radii,
r(R), and we develop a strategy such that the Born radii
are not updated in the inner steps. To motivate this method,
it is helpful to express the potential in the following form:

A(R(Rm), rn))U(rn)+G(R(Rm), rn) (10)

where rn is nth configuration of the subset of sampled
coordinates, r(Rm) is the set of Born radii which are
evaluated based on the coordinates of the mth coordinate
state Rm of the entire protein, U(rn), and G(r(Rm), rn) is the
solvation energy evaluated at the given states. We can further
express the energy deviation from the “true” potential, where
the Born radii are synchronous with the current coordinate
state, in terms of an error potential ε(r(Rm), rn):

ε(R(Rm), rn))A(R(Rn), rn)-A(R(Rm), rn))G(R(Rn), rn)-
G(R(Rm), rn) (11)

Thus, the inner loop configurations are evaluated according
to an approximate short-range potential AS(r(Rm), rn), where
the Born radii are held at a previous or “latent” state. The
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relation to the true short-range potential can similarly be
written in terms of a short-range error potential εS(r(Rm),rn):

AS(R(Rn), rn))AS(R(Rm), rn)+ εS(R(Rm), rn) (12)

where the coordinate state is rn, and the latent Born radii,
r(Rm) are calculated from a previous step. Likewise, the true
long-range potential can be described in terms of long-range
error potential:

AL(R(Rn), rn))AL(R(Rm), rn)+ εL(R(Rm), rn) (13)

For simplicity, these energies can be expressed in terms of
the state indices only:

AS(n, n))AS(m, n)+ εS(m, n)
AL(n, n))AL(m, n)+ εL(m, n)
ε(m, n)) εS(m, n)+ εL(m, n)

(14)

Where, n is the index of the current coordinate state and m
is the index of the Born radii held at a previous state. We
can simply recast the decomposition as

A(n, n))AS(n, n)+AL(n, n))AS(m, n)+ ε(m, n)+AL(m, n)

)A(m, n)+ ε(m, n) (15)

where the index of the coordinate state is first argument in
each of the functions, and the index of the Born radii state
is the second argument. While the error potential described
in eq 14 contains both long and short-range terms, the idea
of the sampling protocols is to treat the all of error potential
terms as long-range terms. Using this new decomposition,
we can define two different sampling protocols:

(1) In both protocols, start with the configuration Ri,
generate a number NI of inner loop steps, where each trial
configuration rk is generated using eq 6. The Born radii are
held at a latent state i, such that the short-range acceptance
criterion is the following:

accS(k ′ |k)

accS(k|k ′ )
) exp[-�(AS(i, k ′ )-AS(i, k))] (16)

(2) Take the final configuration from the inner loop to be
the trial configuration rj for the outer loop and apply either
of two acceptance criteria:

(A) With error correction

accL( j|i)

accL(i| j)
) exp[-�(AL(i, j)+ ε(i, j)-AL(i, i))]

(17)

(B) Without error correction

accL( j|i)

accL(i| j)
) exp[-�(AL(i, j)-AL(i, i))] (18)

Protocol A rigorously obeys detailed balance, while protocol
B is an approximation introduced to improve computational
efficiency. It should be noted that the Born radii are
completely updated in every outer loop calculation, regardless
of protocol. The ideal error potential term would be narrowly
distributed about a mean of zero, so that the distribution
generated by neglecting the term would be nearly equivalent
to the true distribution. The effect of the modification will
be discussed in detail in the results section.

As a control, a “standard” Monte Carlo trajectory, or
protocol S, was also studied. For the standard Monte Carlo
protocol, the same trial move set was used, including steric
screening, but with the Born radii updated at every step, with
no decomposition of potentials. For every step, the ac-
ceptance criterion is simply:

acc( j|i)

acc(i| j)
) exp[-�(A( j, j)-A(i, i))] (19)

Estimation of the Time to Convergence and Improve-
ment Ration. To estimate the optimal number of inner steps,
we express the total processor time T to compute a trajectory
as

T)NO,T<dt/dNO> (20)

where <dt/dNO> is the expectation value of the time required
to generate an outer step. This is not a fixed value, since the
innermost sampling loop samples an arbitrary number of
configurations until a sterically allowed configuration is
obtained. NO,T is the total number of outer steps, which
includes the both the nonequilibrated steps, nO, and equili-
brated steps, NO. This can also be expressed as

T)NO,T(tL +NItS) (21)

where ts is the average time required to generate a single
(sterically allowed) trial coordinate and evaluate the short-
range potential. The rate tL is the time required to evaluate
the long-range potential, which includes the long-range
energies and the time required to update the Born radii. This
quantity does not need to be averaged, since there is no
dependence on the number of steric clashes. NI is the number
of inner steps that are set for the simulation. Since statistics
can only be gathered on the equilibrated outer steps, we can
express NO in terms of the standard error:

NO ) σ2

ε2
g(NI) (22)

where σ is the variance of the energy over the entire
equilibrated portion of the trajectory, ε is the desired error
in the estimate of the energy, and g(NI) is the correlation
interval, or distance between uncorrelated snapshots. This
quantity is measured from the simulation, and will vary with
the number of inner steps for a given system with all other
conditions held constant. It is closely related to other
measures of quality of Monte Carlo trajectories, such as
acceptance ratio, and a low correlation interval often corre-
sponds to a high acceptance ratio.

Since the number of steps required to equilibrate depends
strongly on the initial condition, we shall overestimate this
quantity by assuming that nO ) NO. This varies in practice
from a few correlation intervals to less than half of the
number of outer steps. As long as the equilibration time is
proportional to the number of equilibrated steps, it will cancel
out in the improvement ratio calculation. Using this assump-
tion, the estimated CPU time required for a converged
trajectory is

T) 2
σ2

ε2
g(NI)(tL +NItS) (23)
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where the number of inner steps can be adjusted to locate
the optimal computing time. As a measure of sampling
efficiency, the following quantity can be expressed:

I) TS/T (24)

where I is the improvement, and Ts is the time required for
a converged trajectory in a standard Monte Carlo protocol.

Convergence Determination and Error Estimation.
Determination of the number of steps required for equilibra-
tion and the correlation interval was performed iteratively.
Initially, the number of steps required for equilibration was

estimated very approximately as 3000 for the standard
trajectory, 1000 for NI ) 1, 50, 100, 200, 300, and 400 for
the remaining inner step settings. To estimate the correlation
time, an autocorrelation function of the energy was com-
puted, and the correlation interval g was identified as the
first place that the autocorrelation function crosses zero. This
initial estimate is expected to overestimate the true correlation
time since the trajectory may include nonequilibrated regions,
which contain slow fluctuations toward the equilibrium state
that would not be present in the stationary distribution. Using
this initial estimate, a blocksize was assigned to have a value
of g. Α block standard deviation σB is computed at each
point (using the points preceding the point of interest), and
the trajectory was deemed to be converged if the block
standard deviation was less than a nominal value σB ) 15kBT.

With this new estimate of the equilibrated region of the
trajectory, another estimate of the correlation time was
applied. To improve the estimate, the autocorrelation function
was fit to a simple exponential exp(-τ/τD) where τD is the
decay constant, or correlation time. For this procedure, a
least-squares fit was performed where the sum of the squares
of the errors between the function and the data points are
weighted according to the inverse of error at that point. The
error in the autocorrelation function is given by45

ε[C(τ)])� g
NO - τ

(25)

where g ) 1 + 2τD is the correlation interval, or the number
of steps between uncorrelated snapshots. Once a correlation
time is obtained, the reverse cumulative averaging (RCA)
method was used to obtain a better estimate of the location
of the equilibrated region,47 with the blocksize set to g. A
confidence level of 85% was used to reject the hypothesis
that the block averaged samples came from a normal
distribution, according to the Shapiro-Wilk Test.48,49 The
location of the equilibrated portion of the trajectory depends
heavily on the value of the blocksize, and vice versa, so 30
iterations of the blocksize and RCA convergence calculation
were run. See Figure 1 for the convergence times, correlation

Table 1. Simulation Data for Model Systema

NI NO,T <dt/dNO,T> (s) <E> - <E>STD (RT) σ ε NO (all)

S 250000 6.02 0.00 5.65 0.37 2366928
A-1 95000 6.29 -0.19 5.88 0.76 421025
A-50 40000 12.02 -0.01 5.83 0.21 195235
A-100 25000 16.37 0.13 5.83 0.19 122849
A-200 15000 26.08 0.17 5.86 0.22 74035
A-300 10000 34.37 0.25 5.82 0.24 48860
A-400 6000 43.44 0.12 5.83 0.31 29354
A-500 5000 51.48 0.13 5.91 0.37 24195
B-1 95000 6.20 1.77 5.96 0.28 393587
B-50 40000 11.11 1.58 6.07 0.07 198311
B-100 25000 16.01 1.79 6.12 0.08 123416
B-200 15000 24.72 1.89 6.12 0.08 73904
B-300 10000 32.86 1.71 6.19 0.10 48913
B-400 6000 41.40 1.69 6.09 0.11 29440
B-500 5000 50.47 1.83 6.18 0.12 24568

a Data shown summarizes the results for 10 simulations of each protocol and inner step setting. For the leftmost column, NI is the
number of inner steps. S indicates a standard protocol (no inner steps). For the remaining columns, protocol and number of inner steps are
given. (A-50 represents protocol A using 50 inner steps). NO,T is the total number of steps simulated, including nonequilibrated portions of
the trajectory. dt/dNO,T is the average time to generate an outer step, as described in the text. <E> - <E>STD (RT) is the average
equilibrium energy minus the standard measurement, σ and ε are the standard deviation and standard error of the equilibrated energies.
The rightmost column is the total number of equilibrated steps (across all simulations at the designated setting) used for the calculation.

Figure 1. Summary statistics for validation data set. Bars
represent the log of simulation lengths, and black dots
connected with lines represent the correlation interval for that
simulation. All simulations are run at 600 K. The blue portion
of each bar is the unequilibrated portion, and the green portion
is equilibrated. Different values are given for different runs,
which are trajectories using the same settings, including initial
condition, but assigned different random seeds. The natural
log of the number of total steps, NO,T, appears on the x-axis.
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intervals, and total simulation lengths for each simulation.
Preparation of Unbound receptors. The proteins studied

are listed in Table 2. A few of the proteins had missing
sidechains or loops, outside of the binding sites (>15Å) being
studied. These were reconstructed in arbitrary configurations
free of steric clashes using standard routines in the protein
local optimization program. The sidechains to be sampled
in the Monte Carlo were defined as those within 8 Å of any
atom of the ligand in the holo structure. All calculations were
performed in the absence of the ligand.

Composite Energy Histograms. In order to represent
multiple simulations of the same sampling protocol as a
single histogram, a superposition of individual energy hist-
ograms was computed. This is done to obtain better statistics
so that detailed balance may be demonstrated for protocol A.

For each trajectory histogram, an error εB ) �(gnB) was
assigned at each bin point, where nB is the number of entries
in each bin. To generate the composite histograms for
protocols A and B, each of the trajectory histograms for each
protocol were superimposed with a weight proportional to
the number of uncorrelated entries in each bin of each
trajectory. The errors are computed a superposition of square
of the errors of each trajectory, with the same weights used
to compute the composite histograms. It should be noted that
the sampling protocols produce the same distribution of
energies, independent of number of inner steps chosen. The
data from all ranges of inner steps can therefore be combined
to form a single histogram. Since the error is computed using
the autocorrelation times, the fact that the distributions fall
within error suggest also that the correlation times are
correctly estimated.

Timings. Since simulations were run on a variety of
machines, smaller trajectories were collected to estimate the
average time per outer step (see Table 1). Timings of the
simulations were measured on a Linux machine, using a
single CPU from a dual AMD Opteron CPU running at 2.2
GHz.

Results and Discussion

Comparison of Protocols Using Antibody DB3. To
optimize the number of inner steps and other parameters of
the algorithm, the binding pocket of apo antibody DB3
(1dba)50,51 was selected as a model system. A total of three
sampling protocols were explored, as defined in Theory and
Methods. To compare the effect of neglecting the short-range
error in the Born updates, identical simulations were run
using protocols A (rigorous) and B (approximate). A single
set of 10 trajectories using protocol S was also generated.

The number of inner steps (NI) was set to 1, 50, 100, 200,
300, 400, and 500. For each inner step setting, five tra-
jectories were collected, starting from the same (nonequi-
librium) initial condition with different random seeds. Since
the backbone is held fixed, room temperature simulations
tend to exhibit frustrated dynamics. To obtain better statistics,
especially for protocol S, all simulations were run at 600 K.
The goals of these simulations are twofold: (1) to generate
sufficient statistics to demonstrate detailed balance and (2)
to study the effect of adjusting the number of inner steps
and protocol. A total of 80 separate trajectories were collected
for the analysis. Figure 1 summarizes the pertinent informa-
tion on these trajectories.

The average energies and standard errors of each simula-
tion are in Table 2, and Figure 2 shows histograms of
equilibrated energies for each sampling protocol. The energy
distributions of protocols A and S (standard) appear to be
equivalent. While error bars are not shown for clarity, the
histograms superimpose to well within the estimated error.
The energy distribution of protocol B is offset by roughly
1.75 RT, and is clearly from a different distribution than
protocol A. The standard deviation of protocol B is larger
by roughly 0.3 RT. The broader distribution and higher mean
value is due to the more permissive approximation, which
increases the number of states that are accepted.

The correlation interval is shown in Figure 3. A sharp
decrease is observed from NI ) 50-200, which steadily

Table 2. Binding Pockets Studieda

label protein RB RA LA no. residues <NC>

A db3 Antibody 1dba 1dbb progesterone 30 0.54
B thermolysin 1kr6 1kjo Z-D glutamic acid 41 0.74
C estrogen receptor 1err 3ert raloxifene 73 0.65
D PPAR-γ 1fm9 2prg GI262570 65 0.75
E PI3 kinase 2chx 2chw PIK-039 45 0.65
F CDK2 1buh 1dm2 hymenialdisine 46 0.73

a RB is the receptor used in the simulation (without ligand), and RA is a reference receptor with LA bound to it. <NC> is defined as the
total number of steric clashes divided by the number of sterically allowed steps.

Figure 2. Protocol A distributions superimpose with standard
energy histograms, and protocol B generates a similar ap-
proximate distribution. All simulations were run at 600 K, under
the conditions summarized in Figure 1. Dimensionless energy
is plotted on the x-axis, with the mean of the energies of the
standard simulation <E> subtracted from the energy (see
Table 1). On the y-axis is the probability of observing that
energy.
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decreases over the remaining inner step settings. The
acceptance ratio shows an initially sharp increase, since a
smaller number of inner steps helps to generate better trial
moves for the outer loop. As the number of inner steps
increase however, the inner loop becomes less efficient at
generating trial configurations. This effect is more prominent
in protocol A, which is the rigorous approach. Figure 3c
shows the relative improvement over protocol S (no inner
steps). Optimal values are in the range NI ) 50-200. For
both protocols A and B, a broad optimal range is observed,
which suggests that this optimal range should hold for a wide
variety of proteins.

Binding Pocket Studies. As a first application, we
investigate the flexibility of sidechains in protein binding
pockets. As a test set, we consider several proteins from
Sherman et al.,8 as well as PI3K.52 The assumption of this
work is that sidechains that show more flexibility in our
ensembles will be capable of undergoing rearrangements
upon binding ligands. Table 2 lists the binding pockets
studied. For all trajectory data which is displayed, individual
sidechains conformations were filtered such that no two
conformations are less than an rmsd of 0.05 Å from one
another.

Protocols A and B were used to generate sidechain
ensembles, at a variety of temperatures. Temperatures >300
K were explored for three primary reasons. First, our goal
is to predict conformational changes that could occur upon
binding a ligand. In the limit of pure “conformational
selection”, the bound conformation of the protein would be
populated significantly, or at least measurably, at ambient
temperature. However, there can also be some additional

conformational rearrangement of the 1protein to accom-
modate the ligand (“induced fit”), derived from the free
energy of ligand binding. Here, we have essentially postu-
lated that ligand binding can “induce” conformational
changes that may not be observable with a room temperature
thermal ensemble. It has been observed that sidechain
rearrangements within binding pockets can be cost up to 4
kcal/mol of free energy.15,16

Another reason for considering higher temperature distri-
butions of 600 K is related to limitations of the energy
function. In particular, it has been widely reported that
generalized Born solvent models can overstabilize hydrogen
bonds and salt bridge interactions.39,53 This known limitation
of the implicit solvent model will tend to result in reduced
flexibility of charged residues at ambient temperatures.

Finally, the use of a rigid backbone will also reduce
sidechain flexibility. The test cases were chosen in part
because ligand binding does not induce large changes in
backbone conformation; clearly, further algorithmic develop-
ment, which will be reported in due course, is needed to
deal with backbone fluctuations. When there is reason to
believe that backbone changes are likely to be small, simply
using a higher temperature may help to reduce artifacts due
to the rigid backbone.

Ultimately, from the standpoint of identifying “flexible”
sidechains in a binding site, we view the choice of temper-

Figure 3. Approximate protocol provides slightly better
performance, and optimal performance of both protocols is
in the range of NI ) 50-200. (a) Logarithm of correlation
interval. (b) Acceptance ratio. (c) Improvement ratio, as given
by eq 24.

Figure 4. Distribution of sidechain configurations for Tyr97
and Trp100 of 1dba. Brown configurations are from the native
structure, and cyan configurations are from the holo structure.
Grey sidechains are distinct configurations from a sidechain
trajectory at the given conditions. (a) Tyr97 at 300 K, protocol
A. (b) Tyr97 at 600 K, protocol A. (c) Tyr97 at 900 K, protocol
A. (d) Tyr97 at 300 K, protocol B. (e) Tyr97 at 600 K, proto-
col B. (f) Tyr97 at 900 K, protocol B. (g) Trp100 at 300 K,
protocol A. (h) Trp100 at 600 K, protocol A. (i) Trp100 at 900
K, protocol A. (j) Trp100 at 300 K, protocol B. (k) Trp100 at
600 K, protocol B. (l) Trp100 at 900 K, protocol B.
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ature as a user-definable parameter; in practice, performing
simulations with multiple values of the temperature may be
advisable. Note that, since the backbone is held fixed, the
protein will not denature during the simulation, which
provides considerable freedom in the choice of temperature
and simulation protocol.

Antibody DB3.50,51 For the DB3 antibody (Figures 4 and
5a), the primary conformational change between the two
structures is the large movement of the Trp100 sidechain to
accommodate 4-hydroxytamoxifen. We studied this system
with both protocols A and B at T ) 300, 600, and 900 K,
with NI ) 200 (the upper end of the optimal range). It is
encouraging to observe that the large conformational change
in Trp100 is observed in the Monte Carlo simulations,
performed without a ligand present, at 600 K using protocol

B and at 900 K using protocol A. Two conformational states
of Trp100 are observed: a low-population state where the
sidechain is in a similar conformation as the holo structure
and a high-population state where it is similar to the apo
structure, although significant fluctuation is observed. Inter-
mediate conformations are not observed suggesting a high
energy barrier for the rotation.

The residues His27D and Asn35 show less flexibility in
the simulations and also little conformational change between
the apo and holo structures (Figure 5a). Tyr97, in contrast,
appears to fluctuate in multiple basins. This is because it is
mostly solvent exposed, and there is very little steric
hindrance. The sidechain adopts similar conformations in the
apo and holo structures. This does not necessarily imply a
failure of the computational prediction, however. It is

Figure 5. Binding pocket ensembles. Simulations are carried out in the absence of ligand at 600 K, with protocol B (no error
correction). Ligand and bound (holo) structures are shown in cyan. Unbound native sidechains in starting configurations are
shown in brown. The computed ensemble is shown as thin lines. The ligand from the holo structure is shown for reference. (a)
DB3 antibody and progesterone. (b) Thermolysin and Z-D glutamic acid. (c) Estrogen receptor and raloxifene. (d) PPAR-γ and
GI262570. (e) PI3 kinase and ligand PIK-039. (f) CDK2 and hymenialdisine.
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possible that this sidechain could adopt different conforma-
tions in complex with other ligands.

The magnitudes of fluctuations observed using protocols
A and B for Trp100 and Tyr97 are similar (Figure 4). Since
protocol B is slightly more efficient and appears to provide
similar configurational diversity, it was used for the data
presented for all the remaining binding pockets in Figure 5.
In addition, we have chosen to use T ) 600 K for the
remainder of the test cases, because it provides a balance
between sampling alternative conformations that may be
important in ligand binding, but not so much diversity as to
be uninformative. We reiterate that we view temperature as
a user-adjustable parameter, and using multiple temperatures,
as with this test case, may be advisable.

Thermolysin.54 The residues His142, His146, and Glu66,
which coordinate the Zn ion are correctly predicted to be
rigid (Figure 5b). For this simulation, the zinc ion was
included. The hydrogen bonding network of His231 is
correctly preserved. Asn112 is predicted to be very flexible,
and in fact rotates significantly upon ligand binding.

Estrogen Receptor.55,56 Residues Leu525, Met421, and
His524 all show significant flexibility in the simulations, and
also undergo significant rearrangements upon binding 4-hy-

droxytamoxifin (Figure 5c). Glu353 and Arg394 display less
flexibility due to the strong salt bridge. These show small
conformational rearrangements upon binding the ligand due
to formation of hydrogen bonds to it. Backbone rearrange-
ments observed upon ligand binding, such as those seen in
His524 and Leu525, are of course not captured by the
sidechain MC simulations. As a rough guide, however, the
ensemble correlates well with observed rearrangements.

PPAR-γ.57 The hydrophobic residues Phe282, Leu452,
and Leu469 display flexibilities that correspond to structural
rearrangements upon ligand binding (Figure 5d). Phe363 fails
to sample the bound configuration, and is the first of only
two false negative cases from the entire data set (see CDK2).
It is likely that this is due to the fact that the rigid backbone
occupies a region which occludes the possibility of sampling
an alternative state. His449 displays a narrow range of
flexibility which corresponds to the displacement in the target
structure. Tyr473 samples alternative solvent exposed con-
figurations, similar to Tyr97 in the DB3 antibody. Gln286
displays flexibility and appears to sample some conforma-
tions similar to the holo conformation, to the extent that the
slightly different backbone configurations permit.

PI3 Kinase.52,58 All residues which do not undergo
significant rearrangement upon ligand binding are predicted
to be rigid in the simulations (Figure 5e). Glu880 and Lys890
display conformational diversity in the simulations which
encompasses the observed apo and holo conformations.
Met804 displays significant flexibility in the sidechain
ensemble which encompasses the apo and holo conforma-
tions. The movement of this sidechain is critical for opening
a hydrophobic pocket that is critical for ligand binding and
specificity.

CDK2.59–61 Residues Glu81, Leu83, and Asn132 each
appear to display conformational diversity commensurate
with the observed changes between the apo and holo
structures (Figure 5f), while Phe80 is the second false
negative of the data set. Lys33 displays flexibility, although
it does not quite sample the bound configuration. Instead, in
the absence of ligands, it forms a salt bridge with Asp145,
which is disrupted by the hymenialdiside interaction in the
bound form.

Figure 6a shows a closeup of the salt bridge which is
transiently disrupted in the 600 K simulation. Figure 6b
shows a superposition of multiple structures of CDK2 which
display a similar structural diversity.

Conclusions and Future Directions

A novel application of the MTS-MC algorithm has been
applied to sampling sidechain degrees of freedom in implicit
solvent. Relative to a “simple” Monte Carlo algorithm
without the use of inner steps, the multiscale approach
increases the convergence by a factor of 10-15. Rapid steric
screening provides an additional factor of 2-4 speed up,
and other algorithmic details (rapid updates of energies when
only a portion of the protein is moving) also contribute to
efficiency. Applications to small molecule ligand binding
sites in proteins demonstrate that the method can be used to
efficiently sample large changes in sidechain conformations

Figure 6. CDK2 salt bridge interaction. (a) Binding pocket
ensemble and representation which is identical to Figure 5f,
but from a different perspective. (b) Sidechains from CDK2
structures 1h24, 1h25, 1h26, 1h27, 1h28, 1hc1, 1pw2, 1w98,
and 2jgz.
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and identifies sidechains that may undergo conformational
changes upon ligand binding.

Additional degrees of freedom can be incorporated into
this approach in a straightforward manner. For example, local
changes in backbone conformation can be included using
analytical loop closure62,63 methods with an appropriate
Jacobian.64 Such a method, which is under development,
could be an efficient means of sampling conformational
changes such as those that have been observed in the kinase
DFG motif, or in loop latching as in TIM barrels,65 in a way
that obeys detailed balance and thus can capture entropy
differences between states.
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eqs 5, 33, 34, 38, and 39. The correct version was posted on
April 25, 2008.

Appendix: Proof of Detailed Balance with a
Short Range Cutoff

A more detailed accounting of the short- and long-range
decompositions is presented. These details are omitted from
the body of the text for clarity.

The use of a short- and long-range cutoff is a common
way of improving calculation efficiencies. The advantage
gained is in the infrequent updating of the long-distance
interactions. To explicitly track the updating of the short-
and long-range cutoffs, eqs 14 and 15 can be re-expressed
as follows:

A(m, n)) S(l )A(m, n)+ (1- S(l ))A(m, n) (26)

Where S(l) is a “switching function” of the coordinate state
l, which divides the space over which the potential A(m, n),
as expressed in eq 15, is the potential at Born state m and
coordinate state n. When the Born radii are evaluated based
on the current coordinate state, the short- and long-range
potentials can be expressed in terms of the current coordinate
(and Born radii) state n, and latent cutoff state l:

AS(l, m, n)) S(l )A(m, n)
AL(l, m, n)) (1- S(l ))A(m, n) (27)

Since S(l ) is a function of the complete set of coordinates, a
full update of the distances must be computed. The idea behind
the use of the cutoff is to limit the number of times the full
distance matrix is computed, as well as the full potential.

To this end, an efficient Monte Carlo protocol will update
the switching function infrequently, while maintaining
detailed balance or very nearly doing so. For the updating
scheme that is used for the present work, detailed balance is
rigorously maintained with regard to the short and long-range
evaluations. The simplest form that the switching function

can take is a simple distance cutoff, but more complicated
forms, such as cell neighbor lists and other types of additive
decompositions can be used. For this work, atoms are treated
as short-range if any single atom within a sidechain is within
a cutoff distance of another sidechain. Default settings that
were developed for an optimal minimization strategy were
used.44 The cutoffs vary according to type of interaction.
Each sidechain is identified as either charged or nonpolar.
All atoms in the given sidechain are labeled as such. For
nonpolar atoms interacting with nonpolar atoms, the cutoff
is 15 Å. For charged-nonpolar interactions, the cutoff is 20
Å, and for charged-charged interactions, the cutoff is 30
Å. The updating scheme used for the current work is to
update the switching function at the beginning of the each
outer iteration of the sampling loop.

While the proof of detailed balance for the switching
function updating scheme is independent of the Born radii
updating scheme, the full bookkeeping of all latent states is
presented here for completeness. Re-expressing the short-
and long-range potentials in eq 13 with the short-range state
made explicit gives the following:

AS(l, m, n))AS(l, n, n)- εS(l, m, n)
AL(l, m, n))AL(l, n, n)+ εL(l, m, n)

ε(m, n)) εS(l, m, n)+ εL(l, m, n)
(28)

The resulting (unnormalized) probability distributions are

pS(l, m, n)) e-�AS(l,m,n)

pL(l, m, n)) e-�AL(l,m,n)

pε(m, n)) e-�ε(m,n)

(29)

where q is given by eq 5. Expressing the probability of a
single state in terms of the decomposed states gives the
following:

p(n)) e-�A(n,n)/q
p(n)) pS(l, n, n)pL(l, n, n)) pS(l, m, n)pε(m, n)pL(l, m, n)

(30)

Following the derivations presented in refs 35 and 43, the
required detailed balance condition is

p(i)T( j|i)) p( j)T(i| j)
pS(i, i, i)pL(i, i, i)T( j|i)) pS( j, j, j)pL( j, j, j)T(i| j) (31)

where T( j|i) is the probability of transitioning from coordi-
nate state i to j. Expanding this expression gives:

pS(i, i, i)pL(i, i, i)R( j|i)accL( j|i)

) pS( j, j, j)pL( j, j, j)R(i| j)accL(i| j) (32)

where R( j|i) and accL( j|i) are the selection and acceptance
probabilities of outer state j from state i. Following the MTS-
MC derivation,35 the probability of selecting state j from state
i is given by the following:

R(j|i)) TS
(NI)(j|i) (33)

where the above transition probability is the product of the
individual transition probabilities of the inner loop

TS
(NI)(j|i)) TS(1|i)[∏

k)1

NI-2

TS(k+ 1|k)]TS( j|NI - 1) (34)
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In the short-range, or inner loop of sampling, neither the
switching function nor the Born radii are updated, so that
each step obeys the following detailed balance relation:

pS(i, i, k)TS(k ′ |k)) pS(i, i, k ′ )TS(k|k ′ ) (35)

The transition between outer states j and i obeys the
following detailed balance relation:

pS(i, i, i)TS
(NI)( j|i)) pS(i, i, j)TS

(NI)(i| j) (36)

Combining eqs 32-35 and solving for the ratio of acceptance
probabilities gives the following:

accL( j|i)

accL(i| j)|TRUE
)

pL( j, j, j)pS( j, j, j)

pL(i, i, i)pS(i, i, j)
(37)

Protocols A and B follow the same updating scheme for the
switching functions. The acceptance probability for protocol
A is expressed in eq 17 as follows:

accL( j|i)

accL(i| j)|A )
pL(i, i, j)pε(i, j)

pL(i, i, i)
(38)

The ratio of eqs 37 and 38 is unity

(acc( j|i)
acc( i|j)|TRUE ⁄ (acc( j|i)

acc( i|j)|
A

)
pL( j, j, j)pS( j, j, j)

pL(i, i, i)pS(i, i, j)
·

pL(i, i, i)

pε(i, j)pL(i, i, j)

)
pL( j, j, j)pS( j, j, j)

pS(i, i, j)pε(i, j)pL(i, i, j)
) p( j)

p( j)
) 1 (39)

and therefore, the sampling scheme described by eqs 37
and 38 rigorously obeys detailed balance. For all equations
in the body of the text, the state of the switching function
is not shown, but is updated according to the scheme
described. It should be noted, however that the “standard”
protocol is not updated according to this scheme, since
there is no need to express the energies in terms of the
latent states.

The acceptance probabilities for protocol B, as given in
18, are as follows:

accL( j|i)

accL(i| j)|B )
pL(i, i, j)

pL(i, i, i)
(40)

The ratio of the true acceptance probabilities is equivalent
to the acceptance probabilities given in eq 37, and the ratio
is given simply as follows:

(acc( j|i)
acc( j|i)|A ⁄ (acc( j|i)

acc( j|i)|
B

)
pL(i, i, j)pε(i, j)

pL(i, i, i)

pL(i, i, i)

pL(i, i, j)

) pε(i, j)) exp[-�ε(i, j)] (41)
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Abstract: Apoptosis is self-programmed cell death. The X-linked inhibitor of apoptosis (XIAP)
is known to inhibit caspase proteins, the key players in apoptosis. When this happens, the cells
become cancerous as they cannot die naturally. XIAP inhibitors are often overexpressed in
cancer tissue. Presented in this article are the results of simulations of XIAP-caspase and XIAP-
antagonist complexes. It has been previously established experimentally that low intensity
ultrasound promotes apoptosis and increases the therapeutic effect of some XIAP-caspase
interaction antagonists. The resulting calculated complex formation energies produced in this
work were used with a simple multiscale model as an example of applying such energetic results
for estimating the effects of ultrasound on these complexes. The microscopic simulations have
been carried out with molecular mechanics employing an all-atom description of the molecules
with the OPLS-AA and polarizable force field (PFF) formalisms. It has been determined that the
interaction energies in the XIAP-caspase-9 pair with both OPLS and PFF are roughly the same
and in the 30–40 kcal/mol range, while PFF predicts a higher magnitude of energy of the XIAP-
antagonist complex formation (ca. 100 kcal/mol vs ca. 40 kcal/mol), thus probably being more
adequate in reproducing the inhibition abilities of this low molecular weight antagonist. The
presented study of the ultrasound effect leads to the conclusion that it is most likely based on
the cavitation accompanying the ultrasound irradiation of the cells and not on a simple frequency
resonance, as was suggested by some authors.

I. Introduction

A. Apoptosis As a Natural Anticancer Mechanism,
Caspase Proteins, X-Linked Inhibitor of Apoptosis. Apop-
tosis is a specific type of self-induced cell death.1 Alteration
of apoptosis pathways can lead to its being underpresent,
which causes the cells to become “immortal” (cancer).1b This
is why recently there has been much attention directed toward
understanding apoptosis and its reactivation after inhibition,
especially in the area of cancer research.2

Apoptosis is executed by caspases, a family of cystein
proteases. The critical involvement of caspases in apoptosis
has been documented and discussed in a number of works.1,2

Clearly, inhibition of caspases leads to a failure of apoptosis.
The Inhibitors of Apoptosis (IAP) are a family of proteins

which strongly interact, bind, and inhibit caspases. XIAP (or
X-linked inhibitor of apoptosis) is one of such molecules
receiving much attention recently.3 Each XIAP protein
contains copies of the 80 residue baculoviral IAP repeat
(BIR). Each BIR domain has a distinct function. For example,
BIR3 of XIAP efficiently inhibits caspase-9 protein. The
BIR3 domain of XIAP captures caspase-9 in its inactive
conformation and prevents activation.1b

Thus, the XIAP effectively stops apoptosis. Disruption of
the XIPA (BIR3) – caspase-9 complex (inhibition of XIAP)
is viewed as a way to induce apoptosis in cancer cells and
to work as an antitumor agent. A number of experimental
studies of possible pro-apoptosis agents, including Smac/
DIABLO, peptides similar to Smac/DIABLO, and small
molecules, have been undertaken.4 Promoting apoptosis is
a valid and actively pursued target in current cancer research.* Corresponding author e-mail: kamin1ga@cmich.edu.
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This article is intended to make a molecular modeling
contribution in the area of studying apoptosis inhibition.

B. Simulations of Intermolecular Interactions – Fixed
Charges and Polarizable Force Fields. One of the most
common approaches in simulation of proteins is the fixed-
charges model. In this case, the electrostatic interactions
between particles are represented by attraction or repulsion
between constant predetermined Coulomb charges assigned
to the atomic sites. This scheme is implemented in such
widely used force fields as AMBER,14 MMFF,15 and OPLS-
AA.16 While this approach usually predicts the structure of
biological systems and the relative binding energies rather
well, and the computational efficiency is high, there are
certain limitations to the technique. Since the Coulomb
charges on atoms do not change in the course of simulations,
there is no way the simulated electrostatics can adequately
respond to a changing electrostatic environment. For ex-
ample, when a molecule is immersed in a polar solvent, such
as water, it usually becomes more polar (a water molecule
in gas phase has a dipole moment of ca. 1 Debye lower than
the same molecule in pure liquid water17). If a force field
utilizing permanent fixed charges is parametrized to repro-
duce liquid-state properties, it will inevitably be overpolarized
for gas-phase or other low dielectric constant media. This is
why absolute binding energies in gas phase can be overes-
timated by fixed-charges force fields by as much as 2.5 kcal/
mol even for small molecules.18 It is therefore highly
desirable to have a polarizable electrostatic model, which
can readjust as the environment changes. In this case,
magnitudes of the charges can change or point electrostatic
dipoles are induced. A number of polarizable force fields
have emerged in recent years, with the scope of the
applications ranging from neat liquids to protein–ligand
complexes in solutions and computing absolute acidity
constants.19,20

Since the purpose of the presented work is directly
dependent upon estimating binding energies, it is natural to
assume that the explicit treatment of electrostatic polarization
could be inportant. This is why this work was done with
using both fixed-charges OPLS-AA force field16,21 and a
recently developed polarizable force field for proteins and
small molecules.18,19e Comparison of the results is aimed at
identifying the situations in which employing polarizable
force fields is critical.

C. Application of Low-Intensity Ultrasound As an
Apoptosis-Promoting Technique. Uses of ultrasound in
medical applications are numerous and range from imaging
in diagnostics to ultrasound treatments of tumors.5–10 Effects
of low-intensity ultrasound are less well studied than those
of the high-intensity one, but they are nevertheless quite
promising, especially in the area of cancer research. For
example, death rate of human ovarian carcinoma cells have
been reported to increase as a result of ultrasound sonifica-
tion, while the energy directly associated with the ultrasound
itself was clearly not sufficient to kill them.11 Apoptosis in
human leukemic cells can be induced by low-energy ultra-
sound, which suggests new ways of anticancer therapy.10

Enhancement of chemotherapy by sonification has also been
reported. Exposure to ultrasound enhances cytotoxicity of

anticancer chemicals to cancer cells. As a result, the dosage
of a drug can be reduced and a patient’s tolerance to
chemotherapy improved.7 Ultrasound can synergize the
effects of adriamycin, cisplatin, 5-fluoraurcail, arabinosyl
cytosine, boron hydrochloride monohydrate, diazoquononem,
and 4′-O-tetrahydropyranyladriamicyn.7 The synergy has
been confirmed in ovarian cancer, breast cancer, cervical
cancer, and leukemia.

While the apoptosis inducing effect of ultrasound sonifi-
cation has been established experimentally, the exact mech-
anism of this process still remains to be understood.
Currently, three hypotheses have been put forward.7 The first
one suggests that the ultrasound irradiation causes confor-
mational shifts, such as, for example, turning an inactive form
of caspase proteins into active ones. The second hypothesis
is the resonant frequency one, which states that the frequency
of the irradiating ultrasound is close to the frequency of, for
example, XIAP-caspase bonding. Thus, the ultrasound
directly destroys the harmful caspase inhibition complex in
a targeted manner. Finally, the third hypothesis is that the
destruction of the cancer cells is caused by cavitation.
Cavitation is a phenomenon which accompanies ultrasound
propagation in liquids, such as water. An ultrasound wave
creates zones of increased and decreased pressure. When the
pressure is sufficiently decreased, a gas bubble emerges. Then
the pressure increases again, and the bubble collapses. This
cycle is repeated with the frequency of the ultrasound. The
collapse of the air bubbles creates shock waves, and the
pressure in these waves can reach as high as 40–60 kbar.12,13

Therefore, the pressure range in the medium can greatly
exceed the nominal ultrasound wave pressure amplitude of
ca. 1.5 kbar.

The work presented in this manuscript explores the
frequency resonance and cavitation action hypotheses at the
microscopic level to cast light on the mechanism of the low-
intensity ultrasound-induced apoptosis in cancer cells.

The remainder of the paper is organized as follows. Section
II describes the methodology involved in computing micro-
scopic protein–ligand interaction energies and the mecha-
nistic model used to assess the effect of ultrasound upon the
complex formation. Section III presents results of the
calculations. These are followed by conclusions in Section
IV.

II. Methods

A. Calculating Intermolecular Interaction Energies.
First, interaction energies of the BIR3 domain of XIAP with
the caspase-9 protein and a small molecular antagonist were
calculated using both OPLS-AA and polarizable force field
(PFF). The initial geometries of the complexes were taken
from Protein Data Bank structures 1NW9 and 1TFQ,
respectively. Hydrogen atoms were added to the structures
using the Maestro program.22 Then each complex was
truncated so that only those residues with at least one atom
within a cutoff distance of 7.5 Å of any atom of the other
molecule in the complex were considered and all the other
residues discarded. The small antagonist23 shown in Figure
1 was not truncated in any way.
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Figures 2 and 3 demonstrate parts of the molecules
included in simulations.

For each of the two complexes, a series of energy
minimizations was performed. The parts of the complexes
(chains A and B in the first case, chain A and the ligand in
the second one) were moved with respect to each other prior
to the optimizations in order to obtain interaction energy as
a function of distance between the parts. The parts were
displaced along the line passing through the centers of masses
of the parts in their original full form (as in the PDB files,
not truncated). Geometry of the ligand (red in Figure 3) was
fixed. For all the protein parts, backbone geometry was fixed
in the course of the energy minimizations, and the side chains
were completely flexible. Interaction energies were computed
using the OPLS-AA force field16,21 and, in separate runs,
the complete polarizable force field for proteins19e and
polarizable force field for small molecules.18 Geometry
optimizations were performed in continuum PBF solvent
corresponding to water for the polarizable force field19e and
the standard IMPACT SGB model in the OPLS-AA calcula-
tions. IMPACT software suite was used for all the energy
minimizations.24 A conjugate gradient technique was em-
ployed with the convergence criterion for the final energy
gradient set to 0.05 kcal/mol/Å.

After the dependence of the interaction energies on the
distance between the parts of the complexes was obtained

as described above, it was used in the mechanistic model
introduced below to determine the effect of ultrasound
irradiation on the XIAP-BIR3 complexes with caspase-9 and
the small molecular antagonist.

B. Force Fields. We have used both a polarizable force
field (PFF) and a fixed-charges OPLS-AA. The procedure
for building the PFF has been described elsewhere.18 In the
essence, the electrostatic interactions are represented by
interactions of fixed charges and inducible point dipoles with
each other. Fourier series were employed for the torsional
energy and harmonic bond stretching and angle bending
parameters were used.

In case of the fixed-charges OPLS force field, the key
difference was that the nonbonded part was calculated as

Enb )∑
i<j

[qiqje
2 ⁄ rij + 4εij(σij

12 ⁄ rij
12 - σij

6 ⁄ rij
6)]fij (1)

The summation runs over all the pairs of atoms i < j on
molecules A and B or A and A for the intramolecular
interactions. Moreover, in the latter case, the coefficient fij

is equal to 0.0 for any i-j pairs connected by a valence bond
(1–2 pairs) or a valence bond angle (1–3 pairs). fij ) 0.5 for
1,4-interactions (atoms separated by exactly 3 bonds) and fij

) 1.0 for all the other cases. Standard OPLS-AA parameters
were used.

C. Mechanistic Model for the Effect of Ultrasound
Irradiation on the Protein–Ligand Complexes. The data
from the intermolecular interactions simulations were used
in a simple mechanistic model which has been devised to
qualitatively estimate effects of ultrasound on the com-
plexes in hand. While other mechanistic models had been
proposed before,25 none of them were combined with an
explicit all-atom simulations to provide a detailed descrip-
tion of processes in a small protein–ligand complex. The

Figure 1. Antagonist to the XIAP-caspase-9 interaction.

Figure 2. Explicitly modeled part of the XIAP-BIR3 interacting
with caspase-9 protein. Residues present: chain A (blue):
Leu256–Arg258, Val279–His346; chain B (green): Tyr153,
Gln240–Gly248, Ala316–Gln320, Ser333–Thr347, Asp379–
Lys410; Zn2+ ion (not shown).

Figure 3. Explicitly modeled part of the XIAP-BIR3 interacting
with the small antagonist. Residues present: chain A (blue):
Tyr277–Tyr324; complete ligand (red); Zn2+ ion (green).
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model is somewhat crude, but it permits the drawing of
conclusions in qualitative agreement with the available
experimental data. The protein–ligand complex is sche-
matically shown in Figure 4.

The interacting protein and ligand are represented as
masses M1 and M2 located at one-dimensional positions x1

and x2 and connected by a spring with a constant k. In
addition, the masses are experiencing external forces F1 )
P ·A1 and F2 ) P ·A2, where P is the external pressure and
A1 and A2 are effective areas of the molecules. A ) πd2/4,
where d is the largest distance between two atoms in a
molecule. In the presence of ultrasound, P ) P0 cos(ωt),
where P0 and ω are the amplitude and angular frequency of
the ultrasound wave, and t stands for time. Then the equations
of motion for the masses 1 and 2 are

M1ẍ1 )-k(x1 - x2)+F1

M2ẍ2 )-k(x2 - x1)-F2

(2)

Dividing each equation by the corresponding mass and
subtracting the second one from the first

ẍ1 - ẍ2 ) (- k
M1

- k
M2

)(x1 - x2)+
F1

M1
+

F2

M2
(3)

We are only interested in relative motion of the molecules,
thus we can disregard the result of adding the eqs 2
describing the motion of the center of mass. Introducing a
new variable y ) x1 – x2

ÿ)-
k(M1 +M2)

M1M2
y+ ( F1

M1
+

F2

M2
) (4)

Using the reduced mass µ ) M1M2/(M1+M2) and introducing
a(t) ) a0cos(ωt) ) F1/M1 + F2/M2 ) P ·A1/M1 + P ·A2/M2

) (A1/M1 + A2/M2) ·P ) (A1/M1 + A2/M2) ·P0 cos(ωt), thus
a0 ) P0 · (A1/M1 + A2/M2), and, from eq 4

ÿ+ k
µ

y) a0cos(ωt) (5)

or, with k/µ ) ω0
2

ÿ+ω0
2y) a0cos(ωt) (6)

Equation 6 represents the classical problem of driven
oscillatory motion. The solution (after a certain equilibration
time) is

y)
a0

ω0
2 -ω2

cosωt) (7)

Therefore, the amplitude of the forced motion of the protein
and ligand with respect to their equilibrium positions in the
complex is

y0 )
a0

ω0
2 -ω2

)P0

A1/M1 +A2/M2

k/µ- (2πν)2
(8)

where ν is the linear frequency of the ultrasound.
Therefore, all we have to do is to (i) calculate the k and

frequency w0 ) (k/µ)1/2 of the protein–ligand complex (using
the energy vs distance dependence obtained as outlined above
and assuming quadratic behavior near the energy minimum)
and (ii) find the amplitude of oscillation for the complex
y0 and (iii) check if the complex would be destroyed–or
considerably weakened–with such a deviation from the
equilibrium distance. Again, the model is crude, but it permits
qualitative understanding of the process of ultrasound
interaction with the protein–ligand complexes.

III. Results and Discussion

A. Intermolecular Interaction Energies. Interaction en-
ergies of the BIR3 domain of XIAP with the caspase-9 protein
and a small molecular antagonist were calculated as a
function of the separation distances between the XIAP and
caspase-9 or the antagonist, as described in section II above.
Let us first consider the XIAP-caspase-9 complex. Figures
5 and 6 show these energy profiles calculated with the OPLS-
AA and PFF force fields, respectively.

For these and for all the following graphs the point R )
0 corresponds to the intermolecular distance found in the
original PDB file, and the simulation points are separated

Figure 4. Mechanistic model for the protein–ligand complex.

Figure 5. Energy E of XIAP-BIR3 interaction with caspase-9
as a function of the distance R between the molecules.
Computed with the OPLS-AA force field.

Figure 6. Energy E of XIAP-BIR3 interaction with caspase-9
as a function of the distance R between the molecules.
Computed with the polarizable force field (PFF).

850 J. Chem. Theory Comput., Vol. 4, No. 5, 2008 Kaminski



by 1.0 Å distance. The lines added to the graphs are simply
smoothened lines connecting the points and not a specific
interpolation.

Several observations can be made from the above graphs.
First of all, both OPLS-AA and PFF predict the intermo-
lecular interaction energy minima at the same point as the
experimentally reported structure in the 1NW9 PDB file
(within the 1.0 Å precision). Second, the polarizable force
field predicts a much steeper growth of the energy for
distances shorter than at the equilibrium.

Both Figures 5 and 6 share one important characteristic.
As the molecules start getting separated, the energy first
increases by several tens of kcal/mol and then drops down,
with the total energy of the binding of ca. 30–40 kcal/mol.
This effect is well known and is schematically shown in
Figure 7. When macromolecules A and B form a complex
in solution (left), each of them loses some solvation energy
as a part of its surface is not accessible to the solvent. At
the same time, some favorable interaction energy is gained
because of the intermolecular attractions. When the molecules
start separating (center), this dimerization energy becomes
less negative, as the distance between the molecules in-
creases. At the same time, the solvent still cannot penetrate
the empty space between the molecules A and B, and thus
the solvation energy does not become more negative.

Finally, when the molecules are sufficiently far away from
each other (right), the solvent can completely solvate both
molecules, and the total energy of the complex goes down
again, since the lost dimerization energy is at least partially
compensated by the energy of solvation. Therefore, the whole
process requires transition over an activation barrier. This
behavior is precisely what is reproduced by our energy
minimizations in continuum solvent, as shown in Figures 5
and 6.

Only a relatively small part of the potential energy curve,
with the distances shorter than ca. 4–5 Å, is actually relevant
for our efforts to find the harmonic force constant k of the
XIAP-caspase complexes as approximated by Figure 4 and
consequent equations. Figures 8 and 9 demonstrate the
energy-distance dependences for these areas as computed
with the OPLS-AA and PFF, respectively.

These two graphs are shown in the same scale, and it can
be immediately noticed that the general potential well shape
is rather similar with both force fields, even though the
approximated curvatures are somewhat different.

In this case, the lines shown on the graphs are results of
a polynomial fit. To account for the unharmonicity and to
efficiently separate the quadratic form, a fourth degree

polynomial was used in each case. The best-fit polynomial
for the OPLS-AA force field was E(R) ) 1.1684R4 –
12.844R3 + 48.604R2 – 40.237R - 3761.4. The PFF
polynomial was E(R) ) 6.4187R4 – 53.7R3 + 138.1R2 –
80.635R – 2667.7. The nonzero linear terms are employed
to account for a slight difference between the positions of
the experimental (R ) 0) and calculated energy minima.

The force constants k, as computed from the above
equations and the general harmonic formula E(R) ) ½ kR2,
are 97.21 kcal/(mol ·Å2) and 276.2 kcal/(mol ·Å2) or 67.58
N/m and 192.0 N/m as computed with the OPLS-AA and
PFF, respectively. These values will be used in the next
subsection to estimate the effect of an ultrasound irradiation
upon the complexes.

Let us now consider the second complex–the one between
the BIR3 domain of XIAP and an antagonist to the XIAP-
caspase interaction.23 First of all, it should be pointed out
that a successful antagonist has to have a strong interaction
energy with the XIAP molecule, and this trend should be
reflected in the computational results. Figures 10 and 11 show
the dependence of the XIAP-antagonist binding energy
on the distance between the two molecules. The line
connecting the data points is a smooth connecting line, and
R ) 0 corresponds to the experimentally observed PDB
structure (1TFQ).

The following observations can be made here. First, both
OPLS-AA and PFF predict the global energy minimum to
be at a distance 1.5–2.0 Å shorter than in the PDB structure.
Second, the PFF energy is growing steeper than the OPLS-
AA one as the molecules get closer to each other–just like

Figure 7. Schematic illustration of the total energy behavior
in the process of separating interacting molecules A and B in
solution.

Figure 8. Energy E of the XIAP-BIR3 interaction with
caspase-9 as a function of the distance R between the
molecules (for small distances). Computed with the OPLS-
AA force field.

Figure 9. Energy E of the XIAP-BIR3 interaction with
caspase-9 as a function of the distance R between the
molecules (for small distances) with the polarizable force field
(PFF).
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in the case of the XIAP-caspase complex. Third, the general
trend of the energy going up and them down as the molecules
are separated is still preserved in this case. However, there
is a major difference between the PFF and OPLS-AA
performance in this case. The binding energy for the complex
is about 100 kcal/mol with the former and ca. 40 kcal/mol
with the latter. Therefore, PFF predicts the antagonist to be
more successful than the OPLS, which only indicates a
binding energy as roughly the same as for the XIAP-caspase
complex. This pronounced difference can be attributed to
the ability of the polarizable force field to react adequately
to changes in the electrostatic environment and to interfaces
between areas with different dielectric constants (water–pro-
tein–ligand). This ligand is smaller than the caspase-9 protein,
and thus a sharper adjustment is required, with the molecules
experiencing influences of all the three areas. This is why
the advantage of the PFF model (more favorable binding
energy) seems to be more noticeable in this case of a
relatively small molecule bound to the XIAP protein.

Let us now consider the energy-distance dependence for
the small distances and derive the strength constants k for
the complex. The energy dependence on the intermolecular
distances is shown in Figures 12 and 13 for the OPLS-AA
and PFF, respectively.

These graphs are given in different energy scales, as the
overall energy changes are greater with the polarizable force
field. The lines on the graphs represent fourth degree
polynomial fits produced for finding the quadratic part of
the energy-distance relationship. The best-fit fourth degree
equations were produced in the same way as for the XIAP-
caspase complexes. The equations for the OPLS-AA and PFF
curves are, respectively, E(R) ) 0.0128R4 – 0.3361R3 +
2.0327R2 + 7.0849R - 1832.3 and E(R) ) 0.0235R4 –
3.5619R3 + 5.858R2 + 55.013R - 1403.6, where E is in
kcal/mol and R is in Angstroms. This leads to the strength
constant k values computed with the OPLS-AA and PFF
being 4.066 kcal/(mol ·Å2) and 11.72 kcal/(mol ·Å2), respec-
tively. These values translate into 2.827 N/m and 8.145 N/m.
As could be expected, the PFF strength constant is higher,
and the difference is greater than for the XIAP-caspase case,
for which the OPLS-AA and PFF results are more similar.

The values of the computed k constants are shown together
in Table 1.

B. Ultrasound Irradiation Effect on the Strength of
the Complexes of XIAP-BIR3. As all the required values
of k have been obtained as described above. Let us now list
the other parameters required in eq 8. Once all the values
are known, this equation can be used to determine the
amplitudes of the molecular motion in the protein–ligand
complexes and thus estimate their stability.

Figure 10. Energy E of the XIAP-BIR3 interaction with the
antagonist (shown in Figure 1)23 as a function of the distance
R between the molecules. Computed with the OPLS-AA force
field.

Figure 11. Energy E of the XIAP-BIR3 interaction with the
antagonist (shown in Figure 1) as a function of the distance
R between the molecules. Computed with the polarizable force
field (PFF).

Figure 12. Energy E of the XIAP-BIR3 interaction with the
antagonist (shown in Figure 1)23 as a function of the distance
R between the molecules (for small distances). Computed with
the OPLS-AA force field.

Figure 13. Energy E of XIAP-BIR3 interaction with the
antagonist (shown in Figure 1)23 as a function of the distance
R between the molecules (for small distances). Computed with
the polarizable force field (PFF).
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The masses and the diameters (estimated as the largest
atom-atom distance within the molecule) for the caspase-
9, XIAP-BIR3, and the antagonist from the PDB 1TFQ are
given in Table 2.

The following typical values of the ultrasound frequency
and pressure amplitude are assumed: 0.68 MHz and 1.5 MPa.

Having obtained and chosen all these input data, let us
now apply eq 8 to find the maximum displacements of the
molecules from their equilibrium positions. For the XIAP-
caspase complex, the values of y0 for the OPLS-AA and PFF
are, respectively, y0(OPLS) ) 7.525 × 10-13 m ) 0.007525
Å and y0(PFF) ) 2.649 × 10-13 m ) 0.002649 Å. For the
XIAP-antagonist complex, eq 8 gives the amplitudes of
displacements of the molecules with respect to each other
of y0(OPLS) ) 1.683 × 10-12 m ) 0.01683 Å and y0(PFF)
) 5.841 × 10-13 m ) 0.005841 Å.

It is quite obvious that such small displacements will not
be able to change the stability of the complexes in any
significant degree. The reason for this result is in the huge
differences between the frequency of the ultrasound and the
vibrational frequencies of the complexes. These frequencies,
entering as ω2 ) k/µ into eq 8, are as follows. For the XIAP-
caspase complex, the OPLS-AA frequency is ω ) 2.088 ×
1012 rad/s or 3.222 × 1011 Hz. The PFF results for this
complex are ω ) 3.519 × 1012 rad/s or 5.600 × 1011 Hz.
For the XIAP-antagonist complex, the OPLS-AA frequency
is ω ) 1.993 × 1012 rad/s or 3.172 × 1011 Hz, and the PFF
frequency is ω ) 3.383 × 1012 rad/s or 5.384 × 1011 Hz.
Clearly, such a huge difference in the frequencies does not
allow the complexes to be anywhere near the resonance while
irradiated with the ultrasound.

The above results permit a clear and definite conclusion
that the simple frequency resonance hypothesis cannot

explain the removal of the apoptosis inhibition by irradiating
a tissue with low-intensity ultrasound. It is known however,
that a difference in the frequencies can be compensated by
using a larger magnitude of the driving oscillations. In this
case, we are talking about oscillations of the pressure. It has
been shown, both experimentally and theoretically, that
irradiation of a liquid with low-intensity ultrasound leads to
cavitation, and the bubbles present as a result of cavitation
collapse releasing shock waves with pressures of up to 40–60
kbar.12,13 This leads to the actual pressure amplitude being
increased from the nominal 1.5 MPa to ca. 50 kbar ) 5 ×
109 Pa ) 5000 MPa. The variation of pressure is no longer
obeying the exact cos(ωt) form, but let us assume that eq 8
is still valid for the purpose of estimating the effect. In this
case, the amplitude of motion of the caspase-9 and XIAP-
BIR3 molecules with respect to each other are 25.1 Å with
the OPLS-AA and 8.83 Å with the polarizable force field.
The displacement of the XIAP-BIR3 and small antagonist
molecules are 56.1 Å with the OPLS-AA and 19.5 Å.
Therefore, all the complexes are effectively destroyed if we
consider the cavitation resulting from the ultrasound irradia-
tion. We can thus assume that the effect of the ultrasound
on the apoptosis reactivation is much more likely to be rooted
in the accompanying cavitation and definitely not in the
simple frequency resonance. All the calculated displacements
and frequencies are shown together in Table 3.

This first of the above results is not a big surprise. A
typical ultrasound frequency is much lower than a typical
molecular-scale oscillations frequency. Therefore, one could
guess that resonance is not responsible for destruction of
these molecular complexes without carrying out the detailed
molecular calculations described above. However, these
calculations are needed to assess the displacement resulting
from the ultrasound irradiation quantitatively. A difference
in frequencies in driven oscillations can be compensated by
a difference in amplitudes–the typical amplitude of ultra-
sound oscillations is by far greater than the few angstroms
of separation needed to destroy a molecular complex.
Whether the complex will be destroyed or not is determined
by the balance of the unfavorable difference in the frequen-
cies and favorable difference in the amplitudes. And the
detailed calculations are needed to quantitatively study this
balance. Therefore, our conclusion that, in the presence of
cavitation, the ultrasound irradiation is sufficient for destruc-
tion of the XIAP complexes, is not trivial and could not be
made a priori without the quantitative assessment.

Table 1. Values of the Strength Constant k for the
Protein-Ligand Complexes Computed with the OPLS-AA
and PFF Force Fields

XIAP-BIR3
with caspase-9

XIAP-BIR3 with
the small antagonist

complex/method kcal/(mol ·Å2) N/m kcal/(mol ·Å2) N/m

OPLS-AA 97.21 67.58 4.066 2.827
PFF 276.2 192.0 11.72 8.145

Table 2. Masses of the Molecules (in amu), Diameters (in
Å), and Area (A ) πd/4, in A2)

value/molecule mass diameter area

caspase-9 30434.13 64.1 3227.05
XIAP-BIR3 13474.28 66.4 3462.79
small antagonist 442.59 16.5 213.82

Table 3. Frequences of the One-Dimensional Complex Vibrations (ω in rad/s, Ν in Hz) and Amplitudes of Changes in the
Intermolecular Distances, Å

frequency amplitude of displacement

value/complex ω v w/o cavitation with cavitation

XIAP-caspase,OPLS 2.088 × 1012 3.322 × 1011 0.007525 25.1
XIAP-caspase, PFF 3.519 × 1012 5.600 × 1011 0.002649 8.83
XIAP-antagonist, OPLS 1.993 × 1012 3.172 × 1011 0.01683 56.1
XIAP-antagonist, PFF 3.383 × 1012 5.384 × 1011 0.005841 19.5
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IV. Conclusions

Interactions of XIAP-BIR3 with caspase-9 and a small
antagonist have been studied with the fixed-charges OPLS-
AA and polarizable force field (PFF). Energies of the
complexes have been calculated as a function of distance.
Effects of low-ultrasound irradiation on the strength of the
complexes have been assessed with a mechanistic model. It
has been found that the polarizable force field predicts steeper
walls of the potential wells for the formation of the
complexes. In the case of the caspase-9 complex with XIAP,
the total energy of the complex formation is ca. 30–40 kcal/
mol, as predicted by the both force fields. For the XIAP-
antagonist complex, PFF predicts a more negative energy
of complex formation, which is consistent with the experi-
mental findings. Both OPLS-AA and PFF reproduce well
the increase of the total energy followed by the energy drop,
as the molecules are separated from each other in aqueous
solution. In general, the results demonstrate that the polariz-
able force field employed not only is adequate in simulating
protein–ligand complexes in solutions but also gives a
prediction of a stronger success of the antagonist to the
caspase-XIAP interactions.

Estimation of the effect of low-intensity ultrasound on the
strength of the complexes demonstrates that the simple
frequency resonance hypothesis for the ultrasound-induced
reactivation of apoptosis is ruled out. However, the pressure
created by the cavitation accompanying the ultrasound
irradiation is found to be sufficient to destroy the caspase-9
inhibition and, as a result, is named as the most probable
candidate for the mechanism of apoptosis reactivation. While
the overall mechanistic model of the ultrasound-molecular
complex interaction is crude, it permits a qualitative explana-
tion of the experimentally observed phenomena.
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Abstract: The OPLS-AA all-atom force field and the Analytical Generalized Born plus Non-
Polar (AGBNP) implicit solvent model, in conjunction with torsion angle conformational search
protocols based on the Protein Local Optimization Program (PLOP), are shown to be effective
in predicting the native conformations of 57 9-residue and 35 13-residue loops of a diverse
series of proteins with low sequence identity. The novel nonpolar solvation free energy estimator
implemented in AGBNP augmented by correction terms aimed at reducing the occurrence of
ion pairing are important to achieve the best prediction accuracy. Extended versions of the
previously developed PLOP-based conformational search schemes based on calculations in
the crystal environment are reported that are suitable for application to loop homology modeling
without the crystal environment. Our results suggest that in general the loop backbone
conformation is not strongly influenced by crystal packing. The application of the temperature
Replica Exchange Molecular Dynamics (T-REMD) sampling method for a few examples where
PLOP sampling is insufficient are also reported. The results reported indicate that the OPLS-
AA/AGBNP effective potential is suitable for high-resolution modeling of proteins in the final
stages of homology modeling and/or protein crystallographic refinement.

1. Introduction

A necessary component for an effective computational
approach to the homology modeling problem1 for protein
structure prediction2 and crystallographic and NMR structure
refinement3,4 is a scoring function that scores more favorably
the native conformation over other possible conformations.5,6

Scoring functions aimed at fold recognition and secondary
structure assignment have been evaluated on the basis of their
ability to recognize the known native protein conformation
among a set of plausible misfolded decoy structures.7–12 Both
physics-based13–19 and empirical knowledge-based scoring
functions20–23 have performed reasonably well in this kind
of evaluation tests.

Recent development efforts have been focused on the
refinement stages of the homology modeling problem, such
as the conformational prediction of protein loops24–26 and
surface side chains27 as well as the modeling of ligand/
receptor induced fit effects,28 which are essential steps to
make the model useful as a drug discovery and optimization
target. These kinds of high-resolution protein structure
prediction applications have generally been performed using
atomistic physics-based free energy estimators.

Protein decoy scoring exercises have been useful in
determining the key global features of physics-based energy
functions (such as the inclusion of solvation effects)19

necessary for recognizing the broad characteristics of native
protein structures. The decoy evaluation technique, however,
is in general too blunt an instrument for discriminating the
ability of energy functions to recognize small structural
variations within the native ensemble. For thorough testing,
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it is necessary to challenge the energy function by performing
extensive local conformational searches to actively look for
minima of the energy functions and measure the degree of
correspondence of these with the known native conformation.

Determining the correct conformation of a loop on a
protein is one of the final steps in homology model building.
After secondary structures have been assigned and placed,
model construction often proceeds by conformational predic-
tion of connecting loops. In loop prediction tests, we assume
that the rest of the protein frame has been folded accurately
and the conformation of the loop of interest remains to be
determined. Effectively, the loop is a tethered peptide
whose conformations can be sampled extensively while in
the presence of the energy field generated by the rest of the
protein. Many different conformations of the loop can be
generated and tested for false global minima which exist in
the presence of the effective potential field of the protein
framework. This makes the protein loop prediction problem
a powerful benchmarking tool to test the accuracy of energy
functions.

An accurate molecular mechanics model suitable for
protein structure prediction and refinement requires a rep-
resentation of the aqueous solvent environment. The polar-
ization of the solvent favors the hydration of polar and
especially charged groups that, in the absence of solvation
forces, tend to form non-native intramolecular interactions.
Explicit solvent models provide the most detailed and
complete description of hydration phenomena.29 However,
computer simulations using explicit solvent models are
computationally intensive, not only just because of the much
larger number of atomic interactions that need to be
considered but also, and perhaps more importantly, because
of the need to average the fluctuating effects of the solvent
reaction field to obtain a meaningful estimate of the solvation
free energy of each protein conformation. For protein
structure prediction applications effective potential models
that treat the solvent implicitly have much to offer. The
modeling community has developed a strong interest in a
class of implicit solvent models based on the Generalized
Born framework;30–32 an approximation of the Poisson
equation of continuum electrostatics.33,34 Much of the
popularity of Generalized Born (GB) models stems from their
computational efficiency and ease of integration in molecular
simulation computer programs.31,35–38 Generalized Born
models have been shown to be able to reproduce with good
accuracy Poisson32,39–41 and explicit solvent42,43 results at
a fraction of the computational expense.

In this work we evaluate the accuracy of the Analytical
Generalized Born plus Non-Polar (AGBNP) implicit solvent
model,44 in predicting the native conformation of protein
loops using the Protein Local Optimization Program
(PLOP).26 The PLOP program26 performs loop and side
chain conformational predictions based on an efficient
hierarchical conformational sampling algorithm in torsional
angle space, combined with a recent parametrization of the
OPLS-AA force field45,46 and a Generalized Born implicit
solvation model. The AGBNP implicit solvent model is based
on an analytical pairwise descreening47 implementation of
the Generalized Born model30 and a novel nonpolar hydration

free energy model which combines separate estimators for
the solute-solvent van der Waals dispersion energy and the
work of cavity formation.48–50

We previously showed44 that the OPLS-AA/AGBNP
effective potential was able to consistently score native loop
conformations more favorably than non-native decoy loop
conformations generated by PLOP using the OPLS-AA/SGB/
NP effective potential.26 The present work extends that work
by including a larger set of loops as well as longer loops
targets and by employing the OPLS-AA/AGBNP model
directly in the conformational search and optimization
procedure implemented in PLOP. We also evaluate various
parametrizations of the AGBNP model to determine the role
of the nonpolar model and of the correction terms we
developed aimed at reducing the occurrence of intramolecular
ion pairing, and we compare them to the distance dependent
dielectric and the Surface Generalized Born (SGB/NP)51,52

solvation models as implemented in the PLOP program.

As part of this work we have also evaluated the efficiency
of the recently proposed loop conformational search schemes
based on PLOP26,53 which improves on earlier torsion angle
based sampling methods.24,25 These PLOP-based conforma-
tional search schemes have been optimized for loop confor-
mational prediction in the crystal environment. We evaluate
enhanced versions of these schemes more suitable for loop
prediction calculations in the solution environment (the
biologically relevant environment for most homology model-
ing applications). We also tested the applicability of tem-
perature Replica Exchange Molecular Dynamics (T-REMD)
to the problem of protein loop prediction, which, given its
favorable scaling with respect to the number of degrees of
freedom, offers an alternative route for conformational
prediction of long loops and for simultaneous refinement of
interacting protein elements.

2. Methods

2.1. Loop Prediction Algorithms. The loop prediction
algorithm implemented in the Protein Local Optimization
Program (PLOP) is described in detail in ref 26. During loop
buildup, a series of filters of increasing complexity is applied
to eliminate unreasonable conformations as early as possible.
Some of these filters detect clashes between backbone atoms
and the atoms of the rest of the protein (referred to as the
frame) and check that enough space is available to place the
side chain of each residue. On the order of hundreds to
thousands of loop conformations are generated in the loop
build-up stage. To reduce the number of conformations
passed to the next stages, loop conformations are clustered
based on backbone rmsd using the K-means algorithm,54 a
clustering method that requires a predetermined number of
clusters. The two most important parameters that control the
tradeoff between accuracy and efficiency of PLOP’s loop
prediction algorithm are the overlap factor parameter (ofac),
defined as the minimum permitted ratio of the interatomic
distance over the sum of the Lennard-Jones radii of the atoms
of interest, which controls the amount of overlap tolerated
between any two atoms, and the number of clusters Nclust. A
smaller ofac allows more overlap between atoms which in
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effect allows for more loop conformations to be sampled
which otherwise would have been eliminated due to steric
clashes. The efficiency of the loop-prediction procedure is
partially determined by the value of ofac. If ofac is too small,
a large number of irrelavent loop conformations are generated
that have to be processed in subsequent steps. On the other
hand with a large ofac nativelike loops may be rejected due
to steric clashes caused by the discreteness of the torsion
library used to generate the loops. Based on the oberved value
of ofac found in the PDB, Jacobson et al. set ofac to between
0.70 and 0.75.26 The number of clusters Nclust needs to be
sufficiently large to account for each nonredundant loop
conformation. If Nclust is set too small, conformationally
different structures could potentially be clustered together.
The number of nonredundant loop conformations will depend
upon how large is the conformational space available to the
loop. Based on empirical evidence, Jacobson et al. set the
number of clusters to four times the number of residues in
the loop.26

The PLOP program allows sampling of loop conformations
in the crystalline phase with the SGB/NP solvation model.42,42

We performed SGB/NP prediction calculations with and
without crystal symmetry in order to compare with previous
literature.26 Loop prediction calculations with all of the other
implicit solvent models were conducted without crystal
symmetry.

The basic loop prediction algorithm described above is
often insufficient for loops with nine or more residues. For
these longer loops we have adopted prediction schemes based
on multiple executions of PLOP with different parameters.26,53

These schemes are based on focusing conformational sam-
pling in promising and progressively smaller regions of
conformational space. The initial predictions with the most
favorable energy scores are subjected to a series of con-
strained refinement calculations with PLOP in which selected
loop backbone atoms are not allowed to move or move only
within a given range.

The standard 9-residue loop prediction scheme is based
on the procedure described in detail by Jacobson et al.26 For
loops which the standard version of loop prediction fails to
find low-energy, nativelike conformations, we attempted to
predict these loops with an extended version of the loop
prediction algorithm. An extended version of this scheme
involves using twice the number of clusters (from 36 to 72)
and reduced ofac (overlap factor) coefficients (0.5 instead
of 0.75) during the initial prediction stage. All other stages
as described by Jacobson et al.26 remain the same.

For the 13-residue loops we have adopted an alternative
long loops prediction scheme developed previously for longer
loops.53 This scheme is based on the idea of refining the
loop structure by sampling increasingly shorter loop segments
which can be handled by PLOP’s conformational search
procedure. Briefly, initial predictions are produced with 3
different overlap factors (0.65, 0.70, and 0.75) and subjected
to constrained refinement. The five lowest-energy nonre-
dundant structures so obtained are passed to a series of loop
prediction stages which sample progressively shorter seg-
ments obtained by fixing any possible combination up to five
residues at either terminal end of the loop. The standard

sampling and extended sampling variations of this sampling
method differ in the number of nonredundant lowest-energy
models that are processed at each stage. With extended
sampling five lowest-energy models are passed from one
stage to the next. With standard sampling the number of
PLOP iterations is reduced by half by progressively reducing
the number of models passed to later stages.

We also investigated if a technique based on replica
exchange molecular dynamics importance sampling could
predict loop conformations. We selected 9-residue loops
which were not successfully predicted by the standard
sampling algorithm built around PLOP to see if importance
sampling would succeed. This subset of the 9-residue loops
(Table 3) was investigated with the temperature replica
exchange sampling method (T-REMD)55–57 as implemented
in the IMPACT software package.57 The lowest-energy loop
configuration obtained in the third stage of PLOP optimiza-
tion was chosen as a starting point for the corresponding
T-REMD run. Each loop was minimized in the field of the
surrounding immobilized protein frame. T-REMD was based
on constant temperature MD, and exchanges between replicas
were attempted every 500 steps. During T-REMD simula-
tions, the protein frame conformation was fixed. The OPLS-
AA force field was employed to model the intramolecular
potential, while the solvent was treated implicitly by the
AGBNP+ effective potential model (see below). We used
12 replicas at 270, 298, 329, 363, 401, 442, 488, 539, 595,

Table 1. 9-Residue and 13-Residue Loops Indicated by
Their the Protein Data Bank (PDB) Designation for the
Protein and Rfirst and Rlast Are, Respectively, The First and
Last Residue of the Loopa

PDB(Rfirst - Rlast) PDB(Rfirst - Rlast) PDB(Rfirst - Rlast)

1aac(58-66) 1pda(108-116) 1cnv(110-122)
1aba(69-77) 1pgs(117-125) 1d0c(A:280-292)
1amp(57-65) 1php(91-99) 1dpg(A:352-364)
1arb(90-98) 1ptf(10-18) 1dys(A:290-302)
1arb(168-176) 1ra9(142-150) 1ed8(A:67-79)
1arp(127-135) 1rhs(216-224) 1eok(A:147-159)
1aru(36-44) 1sgp(E109-E117) 1f46(A:64-76)
1btl(102-110) 1tca(170-178) 1g8f(A:72-84)
1byb(246-254) 1tca(217-225) 1gpi(A:308-320)
1cse(E95-E103) 1xif(59-67) 1h4a(X:19-31)
1csh(252-260) 1xnb(116-124) 1hnj(A:191-203)
1ede(257-265) 1xyz(A568-A576) 1hxh(A:87-99)
1fus(31-39) 1xyz(A795-A803) 1iir(A:197-209)
1fus(91-99) 1xnb(133-141) 1jp4(A:153-165)
1gpr(63-71) 1wer(942-950) 1kbl(A:793-805)
1isu(A30-A38) 2alp(139-159) 1krh(A:131-143)
1ivd(244-252) 2ayh(169-177) 1l8a(A:691-703)
1lkk(A142-A150) 2cpl(24-32) 1lki(62-74)
1lkk(A193-A201) 2eng(172-180) 1m3s(A:68-80)
1mla(194-202) 2hbg(18-26) 1mo9(A:107-119)
1mrj(92-100) 2sil(183-191) 1nln(A:26-38)
1mrk(53-61) 3pte(78-86) 1o6l(A:386-398)
1mrp(284-292) 3pte(107-115) 1ock(A:43-55)
1nfp(12-20) 3pte(215-223) 1ojq(A:167-179)
1nif(266-274) 3tgl(56-64) 1p1m(A:327-339)
1nls(131-139) 4gcr(94-102) 1qqp(2:161-173)
1noa(9-17) 1a8d(155-167) 1qs1(A:389-401)
1noa(76-84) 1ako(203-215) 1xyz(A:645-657)
1noa(99-107) 1arb(182-194) 2hlc(A:91-103)
1npk(102-110) 1bhe(121-133) 2ptd(136-148)
1onc(70-78) 1bkp(A:51-63)

a A letter indicates the chain on which the loop is found.
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657, 725, and 800 K. The T-REMD simulation length varied
from 15 to 35 ns, and the data collected over the last 5 ns of
the T-REMD trajectories were used for final analysis.

2.2. The Energy Functions. The energy functions we
used to score the predicted loops are composed of the all-
atom force field, OPLS-AA,45,46 and an implicit solvent
model. The particular version of OPLS-AA46 we used has
improved torsional parameters based on fits to high-level
LMP2 quantum chemical calculations of the torsion interac-
tions of small peptides. These fits led to improvements in
the accuracy of the �, ψ, and side chain � torsion energies
for amino acids.27

The implicit solvent models we investigated in this study
are the simple distance-dependent dielectric and two general-
ized Born solvation models, the Surface Generalized Born
(SGB) 42,42 and Analytical Generalized Born (AGB).44 It is
assumed in the distance-dependent dielectric model that the
interaction energy between partial charges in a heterogeneous
dielectric environment follows a simple Coulomb law. The
Coulomb energy term is given by

ECoul )
qiqj

εrij
(1)

where rij is the interatomic distance between atoms i and j,
and ε is the dielectric constant. In the distance-dependent
dielectric model, ε is no longer constant but proportional to
the interatomic distance as such

ε) rij (2)

While the distance-dependent dielectric is known to be a poor
model for solvation, we use the results generated with it to
benchmark the improvements in loop prediction that can be
obtained with more accurate physical models.

2.2.1. SGB/NP Implicit SolVent Model. The SGB model
is the surface implementation42,51 of the generalized Born
model.30 The generalized Born equation

GGB )-1
2( 1

εin
- 1

εw
) ∑

ij

qiqj

fij(rij)
(3)

where qi is the charge of atom i and rij is the distance between
atoms i and j, gives the electrostatic component of the free
energy of transfer of a molecule with interior dielectric εin

from vacuum to a continuum medium of dielectric constant
εw, by interpolating between the two extreme cases that can
be solved analytically: the one in which the atoms are
infinitely separated and the other in which the atoms are
completely overlapped. The interpolation function fij in eq 3
is defined as

fij ) [rij
2 + BiBj exp (-rij

2 ⁄ 4BiBj)]
1

2 (4)

where Bi is the Born radius of atom i defined as the effective
radius that reproduces through the Born equation

Gsingle
i )-1

2( 1
εin

- 1
εw

) qi
2

Bi
(5)

the electrostatic free energy of the molecule when only the
charge of atom i is present in the molecular cavity. The Gsingle

i

are evaluated numerically by integrating the interaction
between atom i and the charge induced on the solute-solvent
boundary surface, S, by the Coulomb field of this atom

Gsingle
i )- 1

8π( 1
εin

- 1
εw

)∫S

qi
2

|r- ri|
4
(r- ri) · n(r)d2r

(6)

where n(r) is the normal to the surface, S, at r. The atomic
radii that define the solute-solvent dielectric boundary are
set to the van der Waals radii based on the Lennard-Jones σ
parameters. The Born radii for eq 4 are calculated using eqs
5 and 6. In this work, we set εin ) 1 and εw ) 80. The SGB
implementation used in this work includes further correction
terms that bring the SGB reaction field energy into closer
agreement with exact PB results.51 Coupled with the SGB
model is a function describing the nonpolar interactions
between the solute and solvent which is based on two terms:
the van der Waals interaction between solute and solvent
and the work to form the cavity in the solvent. The full

Table 2. Summary of the Loop Conformational Predictions Results with the Standard and Enhanced Sampling Proceduresa

9-residue

SGB/NP-X SGB/NP ddd AGB-γ AGBNP AGBNP+ 13-residue AGBNP+

E 8 11(10) 19 6 4(3) 2 2
S 5(5) 7(14) 4(7) 4(7) 4(9) 5(10) 5(14)
M 2 3(4) 3 1 0 1 1(2)
E+S+M 15 21 26 11 8 8 8
(rmsd) 1.44 1.91 2.31 1.10 1.04 1.00 1.87
median rmsd 0.58 0.60 1.27 0.52 0.52 0.58 0.67

a SGB/NP-X: SGB/NP with crystal symmetry; ddd: distance-dependent dielectric; E: number of energy errors (results listed for both
enhanced and (standard) sampling); S: number of sampling errors (results listed for both enhanced and (standard) sampling); M: number of
marginal errors (results listed for both enhanced and (standard) sampling). The values listed were obtained with enhanced sampling; the
values in parentheses were obtained with standard sampling. 〈rmsd〉: average rmsd (in Å) of the lowest-energy loops.

Table 3. Summary of the Loop Conformational Predictions
Results with the OPLS-AA/AGBNP+ Force Field and
T-REMD Conformational Sampling, Compared to the
Corresponding Predictions with the PLOP-Based Standard
Sampling Procedure

PDB(Rfirst - Rlast)
PLOP

rmsd (Å)
T-REMD
rmsd (Å)

1npk(102-110) 3.60 4.30
1onc(70-78) 7.43 2.06
1fus(31-39) 6.03 1.78
1byb(246-254) 4.00 4.95
1noa(99-107) 5.67 3.94
1wer(942-950) 4.29 1.34
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solvation model is referred to as SGB/NP. Exact details of
the nonpolar function in SGB/NP can be found in ref 52.

2.2.2. AGBNP Implicit SolVent Model. The analytical
generalized Born (AGB) implicit solvent model differs from
SGB in the way that the Born radii are calculated. AGB is
based on a novel pairwise descreening implementation44 of
the generalized Born model.58 The combination of AGB with
a recently proposed nonpolar hydration free energy estimator
described below is referred to as AGBNP.44 AGB employs
a parameter-free and conformation-dependent analytical
scheme to obtain the pairwise descreening scaling coefficients
used in the computation of the Born radii used in the
generalized Born equation, eq 3. The agreement between the
AGB Born radii and exact numerical calculations was found
to be excellent.44 The AGBNP nonpolar model consists of
an estimator for the solute-solvent van der Waals interaction
energy in addition to an analytical surface area component
corresponding to the work of cavity formation.44 Because
AGBNP is fully analytical with first derivatives it is well
suited for energy minimization as well as MD sampling. A
detailed description of the AGBNP model and its imple-
mentation is provided in ref 44.

The nonpolar solvation free energy is given by the sum
of two terms: the free energy to form the cavity in solvent
filled by the solute and the dispersion attraction between
solute and solvent.49,59 The nonpolar free energy is written
as44

∆Gnp )∑
i

(γiAi +∆GvdW
(i) ) (7)

where the first term is the cavity term, γi, is the surface
tension proportionality constant for atom i, and Ai is the
solvent exposed surface area of atom i. The second term is
the dispersion interaction term which is given by44

∆GvdW
(i) )Ri

-16πFwεi, wσi, w
6

3(Bi +Rw)3
(8)

where Ri is an adjustable solute-solvent van der Waals
dispersion parameter for atom i. The parameter Fw is the number
density of water at standard conditions (0.033428/Å 3). εi, w and
σi, w are the pairwise Lennard-Jones (LJ) well-depth and
diameter parameters for atom i and the TIP4P water
oxygen as given by the OPLS-AA force field.45,46

(εi, w ) √εiεw, where εi is the LJ well-depth for atom i and
εw is similarly for the TIP4P water oxygen. The ε for water
hydrogens is set to zero. σi, w is defined in a similar manner.)
Rw is the radius of a water molecule (1.4 Å). By not
incorporating the Lennard-Jones parameters into the disper-
sion parameter, Ri, atoms with different though similar εi’s
and σi’s are assigned the same R so as to minimize the
number of adjustable parameters. Bi is the Born radius of
atom i. The Born radius in this equation provides a measure
of how buried atom i is in the solute. The deeper the atom
is in the solute, the smaller will be its contribution to the
total solute-solvent dispersion interaction energy. The
functional form of ∆GvdW in both SGB/NP and AGBNP
depends upon the Born radius since it is a measure of the
degree of burial of the atom. In SGB/NP, the dependence of

∆GvdW on the Born radius was chosen on an ad hoc basis.
The form of eq 8 for the solute-solvent van der Waals
interaction energy component has been derived on the basis
of simple physical arguments.44

In this work we use two sets of parametrizations of R and
γ to test the full nonpolar function described above relative
to a simpler nonpolar function. In past implementations,19

the total nonpolar solvation free energy is given by a term
proportional to the solvent-accessible surface area, or in terms
of eq 7, setting all values of Ri to zero

∆Gnp )∑
i

(γiAi) (9)

where γi is set for all atoms to 0.015 kcal/mol/Å2. This
implicit solvent model with the less-detailed nonpolar
function is referred to as “AGB-γ”. When we use the full
nonpolar function including the dispersion term (eq 8) using
the parameters set forth in the work of Gallicchio and Levy,44

the implicit solvent model is referred to as “AGBNP”.
A third parametrization aimed at implementing a correction

for salt bridge interactions (which are generally overestimated
by generalized Born solvent models)56,60 is also investigated.
To correct for the overstabilization of salt bridges by the
generalized Born model, we used modified radii and γi for
carboxylate oxygens. The radius of the carboxylate oxygen
is decreased from 1.48 Å, as in the original AGBNP, to 1.30
Å; γi of the carboxylate oxygen is set to -0.313 kcal/mol/
Å2. These have the combined effect of increasing the
solubility of carboxylate oxygens and decreasing the likeli-
hood of ion pairing between the carboxylate groups on
glutamate and aspartate and positively charged groups found
on lysine and arginine. We have parametrized this radius
and γi to experimental data for small molecules and to
provide results which matched those generated with explicit
solvent (unpublished results). The implicit solvent model that
has additional descreening of ion pairing is referred to as
“AGBNP+”.

2.3. The Protein Loop Data Sets. We have tested the
loop prediction algorithms on two sets of protein loops of
known structure of nine and 13 residues in length. The first
set is composed of the 57 9-residue loops listed in Table 1.
This set was originally compiled by Fiser et al.24 and by
Xiang et al.25 The 35 13-residue loop set is the same as the
one investigated by Zhu et al.53 These loops were culled
from the PISCES61 database. The proteins in these databases
have been filtered using the following selection criteria: (i)
low sequence identity (60% for Fiser et al.,24 20% for Xiang
et al.,25 and <40% for Zhu et al.),53 (ii) complete X-ray
structure available with resolution <2 Å, R < 0.25, and
average temperature factor within the loop <35, (iii) 6.5 <
pH < 7.5, (iv) overlap factor for any loop atom >0.7, (v)
no significant loop secondary structure, (vi) no more than 4
additional loop residues on either side of the selected loop,
(vii) distance between any loop atom and any ligand atom
>4 Å (6.5 Å for a metal ion).26,53 While some of the loops
contain very small amounts of secondary structure, in general,
they are representative of longer loops found in globular
proteins. All crystallographic water molecules are removed
prior to loop prediction. Hydrogen atoms are added to each
structure.26
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2.4. Characterization of the Predicted Loop Struc-
tures. The predicted loop conformation is the one that has
the lowest energy among those found by the conformational
search procedures described above. The accuracy of the
predicted conformations is analyzed by computing their root-
mean-square deviation (rmsd) with respect to the corre-
sponding crystallographically determined native structures
(the X-ray structure). The native and predicted protein loops
are already in a common frame because only the conforma-
tion of the loop is varied during loop torsion angle sampling.
The rmsd of the backbone atoms (N, C, and CR) predicted
and X-ray conformations are calculated in this common
frame. We characterize the accuracy of the predictions based
on the average and median backbone rmsd of the predictions
and the number of correct predictions. Correct predictions
are defined as those that fall within a chosen rmsd threshold
value from the X-ray structure.

An incorrect prediction (one with an rmsd larger than the
threshold, see below) is further classified as an energy error
when the prediction has an energy significantly lower than
native, and otherwise as a sampling error, when the predicted
loop has an energy higher than the native. This classification
of incorrect predictions is aimed at determining the cause
of the failure of the method to produce a nativelike
conformation. An energy error is indicative of the failure of
the energy function to score the native conformation more
favorably than non-native conformations; so that, even if the
conformational search method had produced them, near-
native conformations would not be recognized as good
predictions. A sampling error is indicative of the conforma-
tional search procedure failing to sample conformations near
the native conformation, even though the energy function
scores at least some of them more favorably than non-native
conformations.

The classification of correct and incorrect predictions
requires the specification of a rmsd threshold value. This
choice depends on the level of prediction accuracy required
by the application. We report our results based on CR rmsd
thresholds of 1.5 and 2.0 Å for the 9- and 13-residue loop
sets, respectively, which have been used before to analyze
the accuracy of loop prediction methods.26,53 In addition,
the classification of incorrect predictions requires the speci-
fication of an energy gap threshold value. If the difference
in energies of the native and predicted conformations (where
the predicted is lower in energy than the native) exceeds the
energy gap threshold value, the incorrect prediction is
classified as an energy error. In this work the results have
been reported using an energy gap threshold value of 5 kcal/
mol. The choice of this value absorbs the effects due to
configurational entropy missing from our free-energy estima-
tor as well as the acceptable level of error in the energy
function. We have explored a range of rmsd and energy gap
threshold parameters and confirmed that the conclusions
drawn in this work are not qualitatively affected by the
particular choices made here. The energy of the native
conformation used in the computation of the energy gap of
the predicted conformation is determined in three ways: (1)
a minimization of the loop with the frame, (2) a minimization
followed by an optimization of the side chains on the loop,

and (3) a confined search within 2 Å rmsd from the X-ray
conformation similarly as for the second stage of refinement
in the loop prediction procedure. We selected the native
energy as the lowest energy determined from any of these.
In almost all cases this conformation differs from the X-ray
structure by no more than 1 Å CR rmsd.

A minority of incorrect predictions were not classifiable
as either energy errors or sampling errors. These were
typically cases that do not qualify as clear energy errors
because, even though the energy of the predicted non-native
conformation is lower than the native conformation, the
magnitude of the energy gap is within the 5 kcal/mol margin
and do not qualify as sampling errors because native
conformations of reasonable low energy were sampled. In
the following we label these cases as marginal errors.
Marginal errors are effectively incorrect predictions due to
subtle and not easily attributable energetic, entropic, and
methodological causes.

In order to be able to compare the T-REMD predictions
with those obtained from the PLOP-based prediction schemes
and with the native structures, we energy-minimized the loop
conformations found at the lowest target temperature of 270
K and recomputed the loop backbone rmsds with respect to
the reference crystal structure. The conformation with the
lowest energy was selected as the predicted conformation.
The predicted conformation was then classified in terms of
the energy gap and rmsd from the native conformation
using the scheme described above.

3. Results

The results of the loop prediction tests are summarized in
Table 2 for the standard and extended conformational
sampling procedures (see Methods). Extended sampling was
conducted on the loops that resulted in a sampling error with
standard sampling; Table 2 includes the combined standard
and extended sampling results. For the 57 9-residue loops
(see Table 1) loop prediction tests were conducted with
OPLS-AA and the following implicit solvent models:
distance-dependent dielectric, SGB/NP, AGB-γ, AGBNP,
and AGBNP+. It has been stated that the results for loop
prediction with PLOP was independent of the presence of
crystal symmetry.26 However, we found that crystal sym-
metry significantly influenced the results with SGB/NP. In
order to compare with previous results,26 we performed loop
predictions with SGB/NP both in the presence and absence
of crystal symmetry. Loop prediction calculations with all
of the other implicit solvation models were conducted only
in the absence of crystal symmetry. Loop prediction tests
for the 35 13-residue loops (see Table 1) were conducted
with AGBNP+. As described in the Methods section we
characterized each loop prediction as being either correct or
incorrect. In turn each incorrect prediction is classified as
an energy error, a sampling error, or a marginal error. Table
2 reports the total number of errors and the number of energy
and sampling errors and the mean and median rmsd of the
predictions from the X-ray structure.

The results in Table 2 for the 9-residue loops demonstrate
that the total number of prediction errors (energy and
sampling) is the lowest for the AGB implicit solvent models.
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The distance-dependent dielectric model (ddd) performs the
worst, followed by SGB/NP in the absence of crystal
symmetry. The introduction of crystal symmetry results in
a significant reduction in the number of sampling errors.
(This is discussed further below.) Of the three AGB-based
models, AGB-γ which mimics GB/SA is the one with the
largest number of prediction errors, whereas AGBNP and
AGBNP+ are equivalent in this respect. The number of
energy errors, a measure of the quality of the energy model,
varies greatly from one energy model to another. The fewest
energy errors are found with AGBNP+, followed by in order
AGBNP, AGB-γ, SGB/NP with crystal symmetry, SGB/NP,
and distance-dependent dielectric. The number of sampling
errors in general does not vary as greatly from one energy
model to another, and their occurrence decreases significantly
by using the extended sampling procedure (as shown in Table
2). This is particularly noticeable for the 13-residue loops
for which two-thirds of the sampling errors with standard
sampling are avoided (decrease 14 errors to five) when using
extended sampling.

Comparison of the results for SGB/NP with and without
crystal symmetry reveals that the inclusion of crystal
symmetry has a dramatic effect on the number of sampling
errors when using standard sampling; SGB/NP without
crystal symmetry produces 14 sampling errors compared to
five sampling errors with crystal symmetry (see Table 2).
The effect of crystal symmetry on the number of sampling
errors is greatly diminished when using extended sampling
(Table 2). With extended sampling the number of SGB/NP
sampling errors drops to seven, whereas the number of
sampling errors (five) with SGB/NP with crystal symmetry
is unchanged.

Table 2 also reports the mean and median rmsd of the
loop predictions with respect to the X-ray structure. The
mean rmsd of the 9-residue loops predictions with the AGB-
based energy models is around 1 Å, which is significantly
better than all the other solvation models including SGB/
NP with the inclusion of crystal symmetry. The worst mean
rmsd for the 9-residue loops is 2.31 Å obtained with the
distance-dependent dielectric model. The median rmsd’s,
which are less affected by outliers corresponding to grossly
incorrect predictions, are significantly smaller than the mean
rmsd’s. The difference between mean and median rmsd’s is
larger for SGB/NP-based and distance-dependent dielectric
models than AGB-based solvation models due to the fact
that incorrect predictions with the latter are generally closer
to the X-ray structures than with the other models. The larger
difference between mean and median rmsd for the 13-residue
loop predictions with AGBNP+ relative to the 9-residue loop
predictions reflects the fact that, expectedly, incorrect predic-
tions with the longer loops tend to be farther away from the
X-ray structure in terms of rmsd.

We repeated loop prediction calculations for six of the
9-residue protein loops classified as sampling errors with the
loop prediction algorithm and using the AGBNP+ solvation
model, using the T-REMD sampling procedure described in
the Methods section. These loops are 1npk (residues
102-110), 1onc (70-78), 1fus (31-39), 1byb (246-254),
1noa (99-107), and 1wer (942-950) (see Table 1). We

sampled these loops using temperature replica exchange
molecular dynamics (T-REMD) as implemented in the
IMPACT molecular mechanics package. The distribution of
conformations in terms of potential energy and rmsd from
the X-ray structure from the last 5 ns of the T-REMD
trajectories for 1fus (31-39) is shown in Figure 4. The rmsd
from the native of the lowest-energy conformations extracted
from the T-REMD trajectories is reported in Table 3. For
comparison, this table also reports the corresponding predic-
tions using the standard conformational search procedure
with PLOP. This table shows that in half of the cases
examined (1onc, 1fus, and 1wer), T-REMD is able to
produce predictions significantly closer to the X-ray structure
than the PLOP-based standard sampling procedure. However,
only one (1wer) of the six incorrect PLOP-based predictions
results in a correct prediction with T-REMD, based on the
1.5 Å rmsd threshold value.

4. Discussion

4.1. Prediction Accuracy. The loop prediction procedure
based on PLOP with the AGBNP+ solvation model and the
extended sampling schemes we devised is very successful
in predicting the conformations of the 9- and 13-residue loops
we have investigated. As Table 2 shows, the successful
prediction rate is 86% and 77% for 9- and 13-residue loops,
respectively. We obtained a signficant reduction in the rates
of successful predictions when using the SGB/NP and
distance-dependent dielectric solvation models, even when
we include crystal symmetry.

Although in this work we define the predicted conforma-
tion as the lowest-energy loop conformation, it is interesting
to examine also how well the loop prediction procedure
captures nativelike conformations within a given energy
range from the minimum energy conformation found. In
homology modeling, the choice of the candidate structures
may not be restricted to selecting only the lowest-energy
conformation. It may be desirable to investigate structures
whose energies lie within some range about the minimum
energy structure found in the search. For instance, a modeler
may consider all those structures whose energies are within
the lowest 5 kcal/mol as possible candidates to represent the
native conformation. Under this scenario the prediction
calculation can be considered successful if any one of the
candidate conformations approximates well the native con-
formation. While the energy range is increased, the prob-
ability of including a nativelike conformation increases at
the expense of the greater cost associated with having to
carry over a larger number of candidate conformations. On
average there are roughly 150 loop predictions per protein
within 5 kcal/mol from the minimum energy. Figure 1
illustrates this cost/benefit analysis for the 57 9-residue loop
prediction calculations (Table 2). Each point on the curves
in Figure 1 was obtained by collecting for each loop target
the set of predicted conformations with energies within a
given energy range ∆E from the energy of the lowest-energy
prediction and recording their number N as well as whether
at least one native conformation (within 1.5 Å rmsd from
the X-ray conformation) is contained in this set, that is
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whether for this particular loop target and energy range the
result is regarded as a successful prediction. We did this over
a range of ∆E values for all 9-residue targets and solvation
models. We then plotted the ratio between the number of
successfully predicted loop targets and the total number (57)
of loop targets (the fraction of successful predictions) for a
given ∆E versus the average number of low-energy predicted
conformations within this value of ∆E for the AGBNP+,
SGB/NP, and distance-dependent dielectric solvation models
(see Figure 1). The abscissa in this plot represents the cost,
as measured by the number of conformations that one is
willing to consider as possible candidates, whereas the
ordinate represents the benefit, as measured by the probability
of including at least one native conformation within this set
of conformations. This plot can be used in two complemen-
tary ways. Given the maximum cost one is willing to sustain
on the abscissa the corresponding ordinate of the curves
yields for each solvation model the expected rate of success.
Alternatively, given the desired rate of success in the
ordinate, the curves give the required associated cost.

The minimum cost corresponds to retaining only the
lowest-energy prediction (N ) 1). This assumes that the
lowest-energy loop prediction from the algorithm is the na-
tive conformation without any additional analysis. For this
value of N the success rates are 86%, 77%, and 55% for the
AGBNP+, SGB/NP, and distance-dependent dielectric mod-
els, respectively, see Figure 1. For all values of ∆E examined,
the AGBNP+ solvation model provides the best success rate
for a given cost level, followed by SGB/NP and the distance-
dependent dielectric solvation models. A greater cost level

entails retaining more than one low-energy loop conformation
which would have to be analyzed in more detail. Conversely,
AGBNP+ yields a higher success rate with less cost than
the other solvation models; for example, to obtain with the
SGB/NP model a success rate of 86% requires considering
on average 500 conformations. To obtain a similar success
with distance-dependent dielectric would require consider-
ation of over 1000 conformations on average per loop target.

It is useful to compare our results with those obtained by
other groups for 9-residue and 13-residue loops. Fiser et al.
used MD along with simulated annealing to predict loop
conformations with an all-atom force field and a statistical
treatment of solvation.24 The percentage of predictions they
report within 2 Å rmsd (described as good and medium
predictions) is 55%.24 Using a tighter rmsd cutoff of 1.5 Å,
we obtain with PLOP and AGBNP+ an 86% success rate
in our predictions for 9-residue loops. For a set of 13-residue
loops, Fiser et al., using the same 2 Å rmsd cutoff, report a
very low 15% success rate,24 compared to the 77% success
rate we obtained using the AGBNP+ scoring function. Xiang

Figure 1. We plotted the ratio between the number of
successfully predicted loop targets and the total number (57)
of loop targets (the fraction of successful predictions) for a
given threshold energy, ∆E, versus the average number of
low-energy predicted conformations within this value of ∆E
for the AGBNP+, SGB/NP, and distance-dependent dielectric
solvation models. All loop predictions are ordered relative to
their energy from the lowest-energy prediction. For an average
given number of loops from the minimum (the abscissa), the
fraction of proteins that have at least one nativelike loop
among the top number of loops is shown above along the
ordinate. The black line presents the results for AGBNP+,
the green line presents the results for SGB/NP, and the red
line presents the results for distance-dependent dielectric.

Figure 2. Energy gaps relative to the optimized native
conformation (in kcal/mol) versus the rmsd (in Å) relative to
the X-ray crystal conformation for three representative 9-res-
idue loop prediction cases with the OPLS-AA/AGBNP+
potential and the standard conformational sampling algorithm:
(a) 1php(91-99) (a successful prediction), (b) 1fus(31-39)
(a sampling error), and (c) 3pte(215-223) (an energy error).
The initial prediction results are in red, the first stage of
refinement is in green, and the second stage of refinement is
in blue. The native (minimized and optimized) are in black.
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et al. performed a search over a discrete rotamer library with
scoring based on their colony energy. For 9-residue loops,
they report an average rmsd of 2.68 Å.25 In comparison the
average rmsd we have obtained with PLOP and AGBNP+
is 1.00 Å. De Bakker et al.62 generated loop conformations
with their program RAPPER63 and scored them with a
knowledge-based potential and with a physics-based poten-
tial, AMBER/GBSA. For 9-residue loops from the Fiser set,24

the average rmsd of the lowest-energy loops was over 2 Å
when scored with the AMBER/GBSA potential which
produced their best results.62

Jacobson et al.26 performed loop prediction calculations
on a large set of 9-residue loops using the SGB/NP model
with the crystal symmetry included and using the standard
conformational sampling algorithm used here.26 Based on
the Supporting Information they provided,26 we were able
to determine the number of energy and sampling errors using
a 1.5 Å rmsd cutoff and a -5 kcal/mol energy cutoff. Based
on our analysis of their data, they had obtained ten energy
errors and eight sampling errors.26 In comparison, we find
11 energy and seven sampling errors with SGB/NP without
crystal symmetry, but we find only eight energy errors and
five sampling errors with SGB/NP with crystal symmetry.
This might indicate that crystal symmetry is important for
prediction accuracy; however, we obtained two energy errors
and five sampling errors using AGBNP+ without the
presence of the crystal environment. A recent study based
on the comparison of X-ray and NMR structures of identical
proteins suggests that in most cases the impact of the crystal
environment on protein structures is relatively small and not
strongly correlated with crystal packing.64 Recently, Zhu et
al.53,65 have reported loop prediction results for the same
35 13-residue loops investigated here using the SGB/NP
potential with crystal symmetry supplemented by hydropho-
bic correction terms and a variable dielectric model. Zhu et
al. show that these promising models lower the average
backbone rmsds of the 13-residue predictions substantially,
from 2.73 Å to 1.08 Å. In comparison, we obtain for the
13-residue loop set with AGBNP+ without crystal symmetry
an average rmsd of 1.87 Å which is intermediate between
the range of rmsd measures reported by Zhu et al.53,65 The
best performing model reported by Zhu et al. produces
according to our definition five energy errors on the 13-
residue loop set (see the Supporting Information of reference
65) compared with the two energy errors obtained here.

4.2. Accuracy of Scoring Functions. The ability of the
effective potential model to consistently score native con-
formations more favorably than non-native conformations
is essential for successful loop prediction. The results in
Table 2 for the 9-residue loops indicate that significant
differences, in terms of the number of energy errors, exist
between the different solvation models we investigated. We
observed that the occurrence of energy errors for each
solvation model only depends weakly on the choice of
conformational sampling as shown in Table 2. This is further
confirmation that the energy errors are incorrect predictions
mainly attributable to deficiencies of the energy functions,
and as such they provide a means to analyze solvation models
and suggest possible routes for improving them.

A more direct test of the potential energy functions used
in loop prediction is to look at the relative percentage of
energy errors rather than the relative percentage of correct
predictions discussed previously which includes the effects
of sampling errors. For the 9-residue loops in the absence
of crystal symmetry, the largest percentage of energy errors
(33.3%) was obtained for the distance-dependent dielectric.
For the other implicit solvent models we tested in the absence
of crystal symmetry, the percentage of energy errors de-
creases with, in order, SGB/NP (19.3%), AGB-γ (10.5%),
AGBNP (7.0%), and AGBNP+ (3.5%).

The distance-dependent solvation model is clearly the
worst in terms of accuracy, with nearly two-thirds of the
incorrect predictions with extended sampling caused by
energy errors (Table 2). Distance-dependent solvation models
lack hydration free energy terms which provide the driving
force toward solvent exposure of polar groups and vice versa
the burial of hydrophobic groups. We have observed that a
major structural problem with distance-dependent dielectric
predictions is the occurrence of non-native salt bridges.
Indeed after rescoring the distance-dependent dielectric
predictions with AGBNP+, all are found to have energies
greater than the native conformation due to the fact that
Coulomb interaction energies of non-native ion pairs are
countered by unfavorable electrostatic and nonpolar desol-
vation self-energy terms.

We observe about half as many energy errors with the
SGB/NP solvation model as with the distance-dependent
dielectric. However the occurrence of energy errors remains
high; about half of the 21 incorrect predictions of 9-residue
loops with SGB/NP in solution with extended sampling are
attributed to the energy function. The reduction in the number
of energy errors (11 to eight) with the inclusion of crystal
symmetry can in principle be rationalized by the stabilization
of the experimental structure due to crystal contacts not
considered when evaluating the energy in solution, but we
found very few examples (see below). In general the
influence of the crystal environment appears to be secondary
at this resolution in light of the fact that the occurrence of
energy errors is significantly more pronounced with SGB/
NP with crystal symmetry than with AGB-based solvation
models without crystal symmetry (see Table 2). The reduc-
tion of SGB/NP energy errors with crystal symmetry is
mainly due to crystal packing steric interactions preventing
the formation of non-native low-energy conformations that
occur in the absence of crystal contacts. Some examples
illustrating the influence of the crystal environment on the
loop conformation are discussed below.

Most SGB/NP predictions classified as energy errors were
found to have electrostatic interaction energies significantly
more negative than native conformations (results not shown),
suggesting that SGB/NP overestimates the occurrence of salt
bridges and intramolecular hydrogen bonds. When SGB/NP
predictions are rescored with AGBNP+, all but two of the
SGB/NP’s energy errors are removed. Zhu et al.53,65 recently
obtained results indicating that the occurrence of energy
errors with SGB/NP can be further reduced by including an
empirical hydrophobic potential and a variable dielectric
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model designed to favor conformations with packed hydro-
phobic cores and to disfavor the occurrence of salt bridges.

The AGBNP+ implicit solvent model with OPLS-AA
yields only two energy errors for the 57 9-residue loops, the
fewest among the solvation models tested (Table 2). The
distribution of AGBNP+ results for 9-residue loops are
plotted in Figure 3, where the energy errors are shown in
the lower right of the plot. Only two of the 35 13-residue
loop predictions with AGBNP+ are classified as energy
errors. By analyzing the energy errors obtained with the
various AGB-based models we are able to establish which
features of the model aid in loop prediction. The number of

energy errors for the 9-residue loops decreases consistently
from six with the AGB-γ model, which is based on the
simple surface area-only nonpolar model, to four with the
AGBNP model,44 which implements a nonpolar model that
takes into account dispersive solute-solvent van der Waals
interactions, to only two with the AGBNP+ model, which
additionally adopts a parametrization designed to reduce the
occurrence of salt bridges (see Methods).

These results indicate that the AGBNP model performs
well for loop prediction applications regardless of the specific
parametrization. Fine-tuning of the nonpolar model and salt
bridge correction can yield, nevertheless, additional improve-
ments. Two of the six energy errors with AGB-γ are removed
when considering the AGBNP model, and, of the remaining
four energy errors, two are removed when adopting ion
pairing corrections in AGBNP+. One of these is the
1ivd(244-252) AGBNP prediction, which has an energy of
-12.10 kcal/mol and an rmsd of 1.91 Å relative to the native.
This incorrect prediction is stabilized by electrostatic interac-
tions between Asp251 and Arg253. This interaction is absent
in the 1.36 Å rmsd predicted conformation with AGBNP+,
consistent with the fact that the energy of the incorrect
prediction is raised above that of the correct prediction when
rescored with AGBNP+. Similarly, the AGBNP incorrect
prediction for 1sgp(109-117) is stabilized by a non-native
ion-pair between residue Lys115 on the loop and the
C-terminal carboxyl group of residue 242 which is avoided
when using AGBNP+.

With AGBNP+ only two of the 13-residue loop predic-
tions are classified as energy errors, moreover, as discussed
below, the native conformations of these two loops are likely
affected by intermolecular interactions present in the crystal
that were not taken into account in the present calculations.
In comparison, 13 of the 35 loops in this set were found to
produce energy errors with the OPLS-AA/SGB/NP potential,
and six of the loops are energy errors with the OPLS-AA/
SGB/NP potential augmented by a hydrophobic contact
correction term,53 even though these calculations took into
account crystallographic intermolecular interactions. The
OPLS-AA/AGBNP+ potential function is in general able
to identify the native conformation without the additional
aid of knowledge-based empirical corrections, suggesting that
the AGBNP solvation model captures the appropriate balance
between polar and hydrophobic solvation and intramolecular
interactions.

The small number of energy errors with the OPLS-AA/
AGBNP+ force field are generally not very informative in
terms of how to modify the potential in order to avoid them.
The energy errors correspond to the 1xif(59-67) and
3pte(215-223) 9-residue loops and the 1hnj(A:191-203)
and 1jp4(A:153-165) 13-residue loops. In all of these cases
the native conformation is influenced by crystal contacts.
Although we modeled 1xif as a monomer as did Fiser et
al.24 and Jacobson et al.,26 the asymmetric unit of 1xif is a
tetramer. However our attempt to model 1xif as a tetramer
still resulted in an energy error possibly due to a native salt
bridge not correctly modeled by AGBNP+. The native
conformations of 3pte(215-223), 1hnj(A:191-203), and
1jp4(A:153-165) are clearly influenced by crystal packing

Figure 3. The results of the OPLS-AA/AGBNP+ loop predic-
tions on the 57 9-residue loops in Table 1. The energies (in
kcal/mol) relative to the native are plotted with respect to the
backbone rmsd (in Å) to the native. The vertical dashed line
is the rmsd cutoff, 1.5 Å. The bold, horizontal dotted-dashed
line is the energy cutoff, -5 kcal/mol. Cases corresponding
to the points to the left of the rmsd cutoff line are successful
predictions, those in the top-right quadrant are sampling
errors, and those in the bottom-right quadrant are energy
errors.

Figure 4. Energy gaps relative to the optimized native
conformation (in kcal/mol) versus the rmsd (in Å) relative to
the X-ray crystal conformation for the T-REMD prediction
calculation of the 1fus (31-39) loop. The conformationas from
the ensembles at 270 K, 400 K, 595 K, and 800 K are shown
in blue, green, red, and magenta, respectively. Energies are
in kcal/mol and rmsd is in Å.
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forces. As for example shown in Figure 5 for 1jp4, these
loops extend away from the body of the protein, assuming
a conformation unlikely to occur in solution. These loops
make however extensive contacts with surrounding protein
molecules in the crystal. The AGBNP+ predicted conforma-
tions without crystal symmetry instead pack closely against
the protein body in a way which would not occur in the
crystal due to steric repulsion. Moreover in the case of 1hnj
and 1jp4, PLOP rejects backbone conformations that stray
more than a certain distance from the protein body and
prevents the evaluation of conformations near the native
conformations. It should also be noted that, whereas we
modeled only the monomer, the biological unit of 1hnj is a
dimer and the loop in question (A191-A203) of one of the
monomers makes contact with the same loop in the other
monomer.

Apart from these cases, it appears that, within the
resolution threshold we considered, the loop conformations
predicted without using crystal symmetry are very close to
the conformations seen in the crystal environment. This
suggests that instead of crystal packing influencing loop
conformations, in most cases it is the conformational
propensity of the loop in solution which determines the
packing arrangement in the crystal. This observation rational-
izes the use of X-ray crystallographically determined struc-
tures as training sets in the development of homology
modeling techniques for modeling protein loops in the
solution environment.

4.3. Sampling Efficiency. Although they are indirectly
influenced by properties of the energy function, such as its
roughness and the level of degeneracy of native and non-
native conformations, incorrect predictions classified as
sampling errors primarily reflect limitations of the loop
prediction algorithm. These are cases in which an incorrect
prediction was made even though the energy of the native
conformation is lower than that of the predicted conforma-
tion. It is important to reduce as much as possible the
occurrence of sampling errors in order to decrease the overall
number of mispredictions.

With the standard loop sampling procedure (Table 2)
sampling errors generally represent a large fraction of
incorrect predictions. This is in contrast to our results with
the inclusion of crystal symmetry with the SGB/NP model
in which only one-third of the incorrect predictions are
classified as sampling errors. We conclude therefore that,
although the parameters of the standard sampling algorithm
(the value of the ofac parameter, the number of clusters, and
the number of conformations that are passed from one stage
of refinement to the next) work well when including
crystallographically symmetry-related molecules,26,53 the
performance using standard sampling is significantly de-
graded when preforming loop prediction in the absence of
the crystal environment. Evidently, the larger conformational
space available to the loops in the absence of the crystal
environment requires more extensive conformational search
strategies. This has serious implications for loop prediction
calculations as part of homology modeling projects which
are typically carried out in the solution environment. Includ-
ing the crystal environment is required to achieve high
accuracy with the current sampling schemes. But in the
majority of homology modeling applications, only the
sequence and a related template protein is known. In most
cases when the crystal parameters are known, so is the
structure of the protein.

Sampling errors result from the sampling algorithm failing
to produce near-native conformations of low enough energy
or from failing to consider near-native conformations alto-
gether. We refer to the first as a local sampling error and
the latter as to a global sampling error. Global sampling
errors typically occur when at the initial prediction stage the
loop build-up procedure cannot find, within the resolution
of the backbone and side chain rotamer library and the value
of the ofac threshold parameter, any conformation free of
clashes in the neighborhood of the native conformation. We
also found that several of the global sampling errors with
9-residue loops are due to an insufficient preset number of
clusters (36 for 9-residue loops), causing near-native con-
formations to sometimes be included in largely non-native
conformational clusters. Local sampling errors are cases in
which a near-native conformation produced by the initial
prediction stage is abandoned prematurely and is not carried
over to the subsequent refinement stages, which are respon-
sible for adjusting the structure to lower the energy to a value
closer to that of the native conformation. We found that the
majority of 13-residue mispredictions are caused by local
sampling errors.

Based on these observations we have modified the standard
loop sampling procedure for 9-residue loops by decreasing
one of the values of ofac tried at the initial prediction stage
(from 0.75 to 0.5) and doubling the number of clusters (from
36 to 72) employed in the initial prediction stage. The
standard loop sampling procedure for 13-residue loops was
modified by increasing the number of candidate conforma-
tions carried over from one stage of refinement to the next
(see Methods). These extended sampling schemes were then
evaluated by applying them to the loops that resulted in
sampling errors with the standard loop procedure. As Table
2 shows, the number of sampling errors was substantially

Figure 5. The X-ray (gold) and predicted (blue) conformations
of the 13-residue loop 1jp4 (A:153-165). The surfaces of the
crystallographically symmetric protein molecules are shown
in green.

Prediction of Protein Loop Conformations J. Chem. Theory Comput., Vol. 4, No. 5, 2008 865



reduced for both the 13-residue and the 9-residue loops by
using the extended sampling scheme. Interestingly, none of
the sampling errors obtained with SGB/NP including crystal
symmetry using the standard sampling scheme improved with
the extended sampling scheme, confirming the results of
earlier studies26,53 that concluded that the standard sampling
procedures were sufficient for loop predictions in the crystal
environment.

4.4. Loop Prediction with Replica Exchange Molec-
ular Dynamics. To better understand the origin of the
observed sampling errors we investigated with T-REMD the
six 9-residue loops that resulted in global sampling errors
with the standard loop sampling procedure. As has been
demonstrated,26,53 the conformational search algorithms
based on PLOP perform well for predicting the conformation
of protein loops of up to 13 residues in length; however,
because of the exponential explosion in the number of
possible loop configurations that need to be examined, the
application of this method to longer loops and situations
which involve several interacting loops as well as simulta-
neous refinement of the protein region surrounding the loops
is problematic. In contrast, importance sampling schemes
concentrate sampling in the most thermodynamically relevant
regions of the conformational space and scale linearly with
the increase of the number of degrees of freedom.

The all-atom potential energy landscapes of proteins are
rugged, containing many local minima separated from each
other by high barriers. Because of this there are long dwell
times in local minima which slows sampling rates making
application of conventional room temperature MC or MD
methods impractical for loop structure determination. New
simulation strategies, called collectively generalized ensemble
methods,66 have been developed which overcome this
sampling bottleneck. One of the most popular methods in
this class is the temperature Replica Exchange Method
(REM),66,67 which can be paired with a constant temperature
molecular dynamics engine (T-REMD).55,56,68–70 The REM
technique has been used to improve sampling of rough
energy landscapes. The REM methodology has been used
to predict the hypervariable regions of a llama VHH antibody
domain71 and has shown promise in other protein structure
determination applications.72–74

Prior to applying the T-REMD procedure to the group of
protein loops classified as sampling errors by the standard
loop prediction routine, we tested the T-REMD protocol on
a less challenging set of five 9-residue loops for which the
PLOP conformational search scheme was able to locate near
native conformations. The T-REMD approach produced
matching results within reasonable simulation times, indicat-
ing that the T-REMD protocol can also easily provide good
predictions in these cases. However, as the results sum-
marized in Table 3 show, the more challenging cases of
conformational sampling, although improved over the PLOP
predictions, remain problematic. The T-REMD scheme was
able to substantially improve within the allocated simulation
time half of the PLOP sampling errors, resulting in much
higher quality structures. The rmsds of the predictions for
the 1onc, 1fus, and 1wer, improved from the range between

4 Å to 7.5 Å to ∼2 Å or less. Only one case, however (1wer),
resulted in a correct prediction based on the 1.5 Å rmsd
threshold.

The T-REMD trajectory for the 1fus (31-39) loop is
illustrated in Figure 4, where the energies of conformations
sampled in the last 5 ns of simulation at various temperatures
are plotted. The patchy pattern of the lowest temperature
ensemble of loop configurations signifies the presence of high
energy barriers which separate loop configurations into
different conformational states. The absence of a direct path
between these structurally distinct macrostates clearly shows
that efficient sampling of the conformational space would
not be possible with standard molecular dynamics conducted
at room temperature. Transitions between the macrostates
are accomplished by acquiring enough thermal energy
(moving up the temperature ladder) to surmount the separat-
ing barrier. Afterward, there is a subsequent gradual anneal-
ing of the structure and temperature leading to the native
conformation at low temperature. The numbers of transitions
between macrostates during 5 ns is small.

5. Conclusion

We have conducted loop conformation prediction tests on
challenging benchmark sets consisting of 9- and 13-residue
loops using the conformational search schemes built into
PLOP to investigate the accuracy of the AGBNP implicit
solvation model in conjuction with the OPLS-AA intramo-
lecular force field. For a set of 57 9-residue loops investigated
previously24–26 we accurately predicted 88% of the loops
using the OPLS-AA/AGBNP+ potential. This is a substantial
improvement over the use of a distance-dependent dielectric
model (63%) or SGB/NP, with (77%) or without (67%) the
inclusion of crystal symmetry, as the implicit solvent model.
A more substantial difference between implicit solvent
models is apparent when examining the relative percentage
of energy errors. AGBNP+ has the lowest percentage of
energy errors at 3.5%, which is less than one-fifth as many
as for SGB/NP (19.3%) and one-ninth as many as for
distance-dependent dielectric (33.3%).

The fact that we have obtained high accuracy without
crystal symmetry when using AGBNP+ suggests that the
presence of crystal symmetry in the model is not crucial for
reproducing the loop structures which have been experimen-
tally determined via X-ray crystallography. In general,
although the side chain positions have been reported to be
strongly influenced by the neighboring crystallographically
symmetry-related molecules,27 the backbone conformation
does not appear to be as strongly influenced by crystal
packing interactions at the resolution of the current study.
A recent comparison between structures determined by X-ray
crystallography and NMR of identical proteins showed little
correlation between structural differences and crystal con-
tacts.64 We found, however, the conformation sampling
schemes previously developed for loop predictions in the
crystal environment needed to be extended in order to avoid
sampling errors when crystal symmetry is not included in
the model. We recommend the use of these updated extended
sampling protocols for homology modeling applications in
the solution environment.
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We expect importance sampling conformational search
methods such as T-REMD to become an important comple-
ment to traditional discrete conformational search methods
in cases when the number of degrees of freedom is large
such as interacting loops, imperfect frameworks for loop
prediction, etc. We note that development of better imple-
mentations of REM ideas which will offer faster sampling
in the context of structure prediction of protein loops is the
subject of intensive ongoing research. This will go beyond
simple temperature exchanges in REM and will involve
modifying the system Hamiltonians and swapping replicas
with different energy potentials, constructed to effectively
increase the range of conformational motion.71 Another
avenue of improvement is to consider more rational ways
of selecting pairs of replicas for exchanges of temperatures
or Hamiltonian parameters,75 with the goal being to examine
how sampling can be enhanced through maximizing mixing
among replicas. Such a multidimensional replica exchange
procedure appears to be promising for exploring the con-
formational space of protein loops.

It should be noted that the success rates we obtained likely
overestimate the success rate obtainable in actual homology
modeling applications because these tests were performed
in the idealized case in which the frame of the protein
surrounding the loop is known. Successful prediction in this
idealized situation is a necessary but not sufficient require-
ment for the ability to predict the correct nativelike loop
conformation with partial knowledge of the protein frame-
work. We have begun to investigate cases in which the
conformations of the protein side chains surrounding the loop
are predicted at the same time as the loop conformation. We
find that the successful prediction rate for these cases is
significantly reduced relative to the tests reported here with
the conformations of the side chains of the protein frame
fixed in their native conformations. Clearly more work is
still needed to develop fast and accurate loop prediction
protocols for “real life” homology modeling applications.
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